
Calc Guide

Chapter 12
 Calc Macros

Automating repetitive tasks

Copyright

This document is Copyright © 2005–2011 by its contributors as listed below. You may
distribute it and/or modify it under the terms of either the GNU General Public
License (http://www.gnu.org/licenses/gpl.html), version 3 or later, or the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), version
3.0 or later.

All trademarks within this guide belong to their legitimate owners.

Contributors
Andrew Pitonyak
Gary Schnabl
Jean Hollis Weber
Claire Wood
Martin Fox

Feedback
Maintainer: Andrew Pitonyak [andrew@pitonyak.org]
Please direct any comments or suggestions about this document to:
authors@documentation.openoffice.org

Publication date and software version
Published 10 March 2011. Based on OpenOffice.org 3.3.

Note for Mac users

Some keystrokes and menu items are different on a Mac from those used in Windows
and Linux. The table below gives some common substitutions for the instructions in
this chapter. For a more detailed list, see the application Help.

Windows/Linux Mac equivalent Effect

Tools > Options
menu selection

OpenOffice.org >
Preferences

Access setup options

Right-click Control+click Open context menu

Ctrl (Control) z (Command) Used with other keys

F5 Shift+z+F5 Open the Navigator

F11 z+T Open Styles & Formatting window

You can download
 an editable version of this document from

 http://wiki.services.openoffice.org/wiki/Documentation/

http://wiki.services.openoffice.org/wiki/Documentation/
mailto:authors@documentation.openoffice.org
mailto:andrew@pitonyak.org
http://creativecommons.org/licenses/by/3.0/
http://www.gnu.org/licenses/gpl.html

Contents

Copyright... 2

Note for Mac users..2

Introduction...4

Using the macro recorder..4

Write your own functions...8
Using a macro as a function..10
Passing arguments to a macro...13
Arguments are passed as values..14
Writing macros that act like built-in functions..14

Accessing cells directly..15

Sorting... 16

Conclusion..17

Calc Macros 3

Introduction

A macro is a saved sequence of commands or keystrokes that are stored for later use.
An example of a simple macro is one that “types” your address. The OpenOffice.org
(OOo) macro language is very flexible, allowing automation of both simple and
complex tasks. Macros are especially useful to repeat a task the same way over and
over again. This chapter briefly discusses common problems related to macro
programming using Calc.

Using the macro recorder

Chapter 13 of the Getting Started guide (Getting Started with Macros) provides a
basis for understanding the general macro capabilities in OpenOffice.org using the
macro recorder. An example is shown here without the explanations in the Getting
Started guide. The following steps create a macro that performs paste special with
multiply.

1) Open a new spreadsheet.
2) Enter numbers into a sheet.

Figure 1: Enter numbers

3) Select cell A3, which contains the number 3, and copy the value to the
clipboard.

4) Select the range A1:C3.
5) Use Tools > Macros > Record Macro to start the macro recorder. The

Record Macro dialog is displayed with a stop recording button.

Figure 2: Stop recording button

6) Use Edit > Paste Special to open the Paste Special dialog (Figure 3).
7) Set the operation to Multiply and click OK. The cells are now multiplied by 3

(Figure 4).

8) Click Stop Recording to stop the macro recorder. The OpenOffice.org Basic
Macros dialog (Figure 5) opens.

4 Calc Macros

Figure 3: Paste Special dialog

Figure 4: Cells multiplied by 3

9) Select the current document (see Figure 5). For this example, the current Calc
document is Untitled 1. Existing documents show a library named Standard.
This library is not created until the document is saved or the library is needed,
so at this point your new document does not contain a library. You can create a
new library to contain the macro, but this is not necessary.

Using the macro recorder 5

1 My Macros 5 Create new module in library

2 OpenOffice.org Macros 6 Macros in selected library

3 Open documents 7 Current document

4 Create new library 8 Expand/collapse list

Figure 5: Parts of the OpenOffice.org Basic Macros dialog

10) Click New Module. If no libraries exist, then the Standard library is
automatically created and used. In the New Module dialog, type a name for the
new module or leave the name as Module1.

11) Click OK to create a new module named Module1. Select the newly created
Module1, type PasteMultiply in the Macro name box at the upper left, and
click Save. (See Figure 6.)

6 Calc Macros

Figure 6: Select the module and name the macro

The created macro is saved in Module1 of the Standard library in the Untitled 1
document. Listing 1 shows the contents of the macro.

Listing 1. Paste special with multiply.

sub PasteMultiply
rem --
rem define variables
dim document as object
dim dispatcher as object
rem --
rem get access to the document
document = ThisComponent.CurrentController.Frame
dispatcher = createUnoService("com.sun.star.frame.DispatchHelper")

rem --
dim args1(5) as new com.sun.star.beans.PropertyValue
args1(0).Name = "Flags"
args1(0).Value = "A"
args1(1).Name = "FormulaCommand"
args1(1).Value = 3
args1(2).Name = "SkipEmptyCells"
args1(2).Value = false
args1(3).Name = "Transpose"
args1(3).Value = false
args1(4).Name = "AsLink"
args1(4).Value = false
args1(5).Name = "MoveMode"
args1(5).Value = 4

dispatcher.executeDispatch(document, ".uno:InsertContents", "", 0,
args1())

end sub

Using the macro recorder 7

More detail on recording macros is provided in Chapter 13 (Getting Started with
Macros) in the Getting Started guide; we recommend you read it if you have not
already done so. More detail is also provided in the following sections, but not as
related to recording macros.

Write your own functions

Calc can call macros as Calc functions. Use the following steps to create a simple
macro:

1) Create a new Calc document named CalcTestMacros.ods.

2) Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open
the OpenOffice.org Basic Macros dialog. The Macro from box lists available
macro library containers including currently open OOo documents. My Macros
contains macros that you write or add to OOo. OpenOffice.org Macros contains
macros included with OOo and should not be changed.

Figure 7: OpenOffice.org Basic Macros dialog

3) Click Organizer to open the OpenOffice.org Basic Macro Organizer dialog
(Figure 8). On the Libraries tab, select the document to contain the macro.

8 Calc Macros

Figure 8: OpenOffice.org Basic Macro Organizer

4) Click New to open the New Library dialog.

Figure 9: New Library dialog

5) Enter a descriptive library name (such as AuthorsCalcMacros) and click OK to
create the library. The new library name is shown the library list, but the
dialog may show only a portion of the name.

Figure 10: The library is shown in the organizer

6) Select AuthorsCalcMacros and click Edit to edit the library. Calc automatically
creates a module named Module1 and a macro named Main.

Write your own functions 9

Figure 11: Basic Integrated Development Environment (IDE)

7) Modify the code so that it is the same as that shown in Listing 2.The important
addition is the creation of the NumberFive function, which returns the number
five. The Option Explicit statement forces all variables to be declared before
they are used. If Option Explicit is omitted, variables are automatically defined
at first use as type Variant.

8) Save the modified Module1.

Listing 2. Function that returns five.

REM ***** BASIC *****
Option Explicit

Sub Main

End Sub

Function NumberFive()
 NumberFive = 5
End Function

Using a macro as a function
Using the newly created Calc document CalcTestMacros.ods, enter the formula
=NumberFive() (see Figure 12). Calc finds the macro and calls it.

10 Calc Macros

Figure 12: Use the NumberFive() Macro as a Calc function

Tip
Function names are not case sensitive. In Figure 12, you can enter
=NumberFive() and Calc clearly shows =NUMBERFIVE().

Save the Calc document, close it, and open it again. Depending on your settings in
Tools > Options > OpenOffice.org > Security > Macro Security, Calc will
display the warning shown in Figure 13 or the one shown in Figure 14. You will need
to click Enable Macros, or Calc will not allow any macros to be run inside the
document. If you do not expect a document to contain a macro, it is safer to click
Disable Macros in case the macro is a virus.

Figure 13: OOo warns you that a document contains macros

Figure 14: Warning if macros are disabled

Write your own functions 11

If you choose to disable macros, then when the document loads, Calc can no longer
find the function.

Figure 15: The function is gone

When a document is created and saved, it automatically contains a library named
Standard. The Standard library is automatically loaded when the document is
opened. No other library is automatically loaded.

Calc does not contain a function named NumberFive(), so it checks all opened and
visible macro libraries for the function. Libraries in OpenOffice.org Macros, My
Macros, and the Calc document are checked for an appropriately named function
(see Figure 7). The NumberFive() function is stored in the AuthorsCalcMacros library,
which is not automatically loaded when the document is opened.

Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open the
OpenOffice.org Basic Macros dialog (see Figure 16). Expand CalcTestMacros and find
AuthorsCalcMacros. The icon for a loaded library is a different color from the icon for
a library that is not loaded.

Click the expansion symbol (usually a plus or a triangle) next to AuthorsCalcMacros
to load the library. The icon changes color to indicate that the library is now loaded.
Click Close to close the dialog.

Unfortunately, the cells containing =NumberFive() are in error. Calc does not
recalculate cells in error unless you edit them or somehow change them. The usual
solution is to store macros used as functions in the Standard library. If the macro is
large or if there are many macros, a stub with the desired name is stored in the
Standard library. The stub macro loads the library containing the implementation and
then calls the implementation.

1) Use Tools > Macros > Organize Macros > OpenOffice.org Basic to open
the OpenOffice.org Basic Macros dialog. Select the NumberFive macro and
click Edit to open the macro for editing.

Figure 16: Select a macro and click Edit

12 Calc Macros

2) Change the name of NumberFive to NumberFive_Implementation (Listing 3).

Listing 3. Change the name of NumberFive to NumberFive_Implementation

Function NumberFive_Implementation()
 NumberFive_Implementation() = 5
End Function

3) In the Basic IDE (see Figure 11), hover the mouse cursor over the toolbar
buttons to display the tool tips. Click the Select Macro button to open the
OpenOffice.org Basic Macros dialog (see Figure 16).

4) Select the Standard library in the CalcTestMacros document and click New to
create a new module. Enter a meaningful name such as CalcFunctions and
click OK. OOo automatically creates a macro named Main and opens the
module for editing.

5) Create a macro in the Standard library that calls the implementation function
(see Listing 4). The new macro loads the AuthorsCalcMacros library if it is not
already loaded, and then calls the implementation function.

6) Save, close, and reopen the Calc document. This time, the NumberFive()
function works.

Listing 4. Change the name of NumberFive to NumberFive_Implementation.

Function NumberFive()
 If NOT BasicLibraries.isLibraryLoaded("AuthorsCalcMacros") Then
 BasicLibraries.LoadLibrary("AuthorsCalcMacros")
 End If
 NumberFive = NumberFive_Implementation()
End Function

Passing arguments to a macro
To illustrate a function that accepts arguments, we will write a macro that calculates
the sum of its arguments that are positive —it will ignore arguments that are less
than zero (see Listing 5).

Listing 5. PositiveSum calculates the sum of the positive arguments.

Function PositiveSum(Optional x)
 Dim TheSum As Double
 Dim iRow As Integer
 Dim iCol As Integer

 TheSum = 0.0
 If NOT IsMissing(x) Then
 If NOT IsArray(x) Then
 If x > 0 Then TheSum = x
 Else
 For iRow = LBound(x, 1) To UBound(x, 1)
 For iCol = LBound(x, 2) To UBound(x, 2)
 If x(iRow, iCol) > 0 Then TheSum = TheSum + x(iRow, iCol)
 Next
 Next
 End If
 End If
 PositiveSum = TheSum
End Function

Write your own functions 13

The macro in Listing 5 demonstrates some important techniques:

1) The argument x is optional. When an argument is not optional and the function
is called without it, OOo prints a warning message every time the macro is
called. If Calc calls the function many times, then the error is displayed many
times.

2) IsMissing checks that an argument was passed before the argument is used.
3) IsArray checks to see if the argument is a single value, or an array. For

example, =PositiveSum(7) or =PositiveSum(A4). In the first case, the number
7 is passed as an argument, and in the second case, the value of cell A4 is
passed to the function.

4) If a range is passed to the function, it is passed as a two-dimensional array of
values; for example, =PositiveSum(A2:B5). LBound and UBound are used to
determine the array bounds that are used. Although the lower bound is one, it
is considered safer to use LBound in case it changes in the future.

Tip

The macro in Listing 5 is careful and checks to see if the argument is an
array or a single argument. The macro does not verify that each value is
numeric. You may be as careful as you like. The more things you check, the
more robust the macro is, and the slower it runs.

Passing one argument is as easy as passing two: add another argument to the
function definition (see Listing 6). When calling a function with two arguments,
separate the arguments with a semicolon; for example, =TestMax(3; -4).

Listing 6. TestMax accepts two arguments and returns the larger of the two.

Function TestMax(x, y)
 If x >= y Then
 TestMax = x
 Else
 TestMax = y
 End If
End Function

Arguments are passed as values
Arguments passed to a macro from Calc are always values. It is not possible to know
what cells, if any, are used. For example, =PositiveSum(A3) passes the value of cell
A3, and PositiveSum has no way of knowing that cell A3 was used. If you must know
which cells are referenced rather than the values in the cells, pass the range as a
string, parse the string, and obtain the values in the referenced cells.

Writing macros that act like built-in functions
Although Calc finds and calls macros as normal functions, they do not really behave
as built-in functions. For example, macros do not appear in the function lists. It is
possible to write functions that behave as regular functions by writing an Add-In.
However, this is an advanced topic that is not covered here; see

http://wiki.services.openoffice.org/wiki/SimpleCalcAddIn

14 Calc Macros

http://wiki.services.openoffice.org/wiki/SimpleCalcAddIn

Accessing cells directly

You can access the OOo internal objects directly to manipulate a Calc document. For
example, the macro in Listing 7 adds the values in cell A2 from every sheet in the
current document. ThisComponent is set by StarBasic when the macro starts to
reference the current document. A Calc document contains sheets:
ThisComponent.getSheets(). Use getCellByPosition(col, row) to return a cell at
a specific row and column.

Listing 7. Add cell A2 in every sheet.

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim i As integer
 Dim oSheets
 Dim oSheet
 Dim oCell

 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCell = oSheet.getCellByPosition(0, 1) ' GetCell A2
 TheSum = TheSum + oCell.getValue()
 Next
 SumCellsAllSheets = TheSum
End Function

Tip

A cell object supports the methods getValue(), getString(), and
getFormula() to get the numerical value, the string value, or the formula
used in a cell. Use the corresponding set functions to set appropriate
values.

Use oSheet.getCellRangeByName("A2") to return a range of cells by name. If a
single cell is referenced, then a cell object is returned. If a cell range is given, then
an entire range of cells is returned (see Listing 8). Notice that a cell range returns
data as an array of arrays, which is more cumbersome than treating it as an array
with two dimensions as is done in Listing 5.

Listing 8. Add cell A2:C5 in every sheet

Function SumCellsAllSheets()
 Dim TheSum As Double
 Dim iRow As Integer, iCol As Integer, i As Integer
 Dim oSheets, oSheet, oCells
 Dim oRow(), oRows()

 oSheets = ThisComponent.getSheets()
 For i = 0 To oSheets.getCount() - 1
 oSheet = oSheets.getByIndex(i)
 oCells = oSheet.getCellRangeByName("A2:C5")
 REM getDataArray() returns the data as variant so strings
 REM are also returned.
 REM getData() returns data data as type Double, so only
 REM numbers are returned.
 oRows() = oCells.getData()

Accessing cells directly 15

 For iRow = LBound(oRows()) To UBound(oRows())
 oRow() = oRows(iRow)
 For iCol = LBound(oRow()) To UBound(oRow())
 TheSum = TheSum + oRow(iCol)
 Next
 Next
 Next
 SumCellsAllSheets = TheSum
End Function

Tip
When a macro is called as a Calc function, the macro cannot modify any
value in the sheet from which the macro was called.

Sorting

Consider sorting the data in Figure 17. First, sort on column B descending and then
column A ascending.

Figure 17: Sort column B descending and column A ascending

The example in Listing 9, however, demonstrates how to sort on two columns.

Listing 9. Sort cells A1:C5 on Sheet 1.

Sub SortRange
 Dim oSheet ' Calc sheet containing data to sort.
 Dim oCellRange ' Data range to sort.

 REM An array of sort fields determines the columns that are
 REM sorted. This is an array with two elements, 0 and 1.
 REM To sort on only one column, use:
 REM Dim oSortFields(0) As New com.sun.star.util.SortField
 Dim oSortFields(1) As New com.sun.star.util.SortField

 REM The sort descriptor is an array of properties.
 REM The primary property contains the sort fields.
 Dim oSortDesc(0) As New com.sun.star.beans.PropertyValue

 REM Get the sheet named "Sheet1"
 oSheet = ThisComponent.Sheets.getByName("Sheet1")

 REM Get the cell range to sort
 oCellRange = oSheet.getCellRangeByName("A1:C5")

16 Calc Macros

 REM Select the range to sort.
 REM The only purpose would be to emphasize the sorted data.
 'ThisComponent.getCurrentController.select(oCellRange)

 REM The columns are numbered starting with 0, so
 REM column A is 0, column B is 1, etc.
 REM Sort column B (column 1) descending.
 oSortFields(0).Field = 1
 oSortFields(0).SortAscending = FALSE

 REM If column B has two cells with the same value,
 REM then use column A ascending to decide the order.
 oSortFields(1).Field = 0
 oSortFields(1).SortAscending = True

 REM Setup the sort descriptor.
 oSortDesc(0).Name = "SortFields"
 oSortDesc(0).Value = oSortFields()

 REM Sort the range.
 oCellRange.Sort(oSortDesc())
End Sub

As this macro is a subroutine, you execute it with Tools > Macros > Run Macro
and then open CalcTestMacros > AuthorsCalcMacros > Module1. Click on the
macro SortRange and then Run.

Conclusion

This chapter provides a brief overview on how to create libraries and modules, using
the macro recorder, using macros as Calc functions, and writing your own macros
without the macro recorder. Each topic deserves at least one chapter, and writing
your own macros for Calc could easily fill an entire book. In other words, this is just
the beginning of what you can learn!

Conclusion 17

	Copyright
	Note for Mac users
	Introduction
	Using the macro recorder
	Write your own functions
	Using a macro as a function
	Passing arguments to a macro
	Arguments are passed as values
	Writing macros that act like built-in functions

	Accessing cells directly
	Sorting
	Conclusion

