
OpenOffice.org 3.1
BASIC Guide

Copyright
This document is published under the PDL. See: http://www.openoffice.org/licenses/
PDL.html

http://www.openoffice.org/licenses/PDL.html
http://www.openoffice.org/licenses/PDL.html

Contents

Copyright..2

Preface...9

1 OpenOffice.org BASIC Programming Guide..................................11

2 The Language of OpenOffice.org BASIC.......................................15

Program Lines ...16

Comments ...17

Markers ...17

Implicit Variable Declaration ..18

Explicit Variable Declaration ..19

From a Set of ASCII Characters to Unicode...20

String Variables..21

Specification of Explicit Strings..22

Integer Variables ...22

Long Integer Variables ..23

Single Variables ..23

Double Variables ...23

Currency Variables ..24

Floats ..24

Specification of Explicit Numbers ..24

Defining Arrays ..27

Defining values for arrays ...30

Accessing Arrays ..31

Array Creation, value assignment and access example ..31

3

Local Variables ..31

Public Domain Variables ...32

Global Variables ..33

Private Variables ...33

Defining Constants ..34

Scope of Constants ...34

Predefined Constants ..34

Mathematical Operators ..35

Logical Operators ..35

Comparison Operators ..36

If...Then...Else..36

Select...Case..37

For...Next...39

For Each..39

Do...Loop...40

While...Wend..41

Programming Example: Sorting With Embedded Loops ...41

Procedures ..42

Functions ..43

Terminating Procedures and Functions Prematurely ..44

Passing Parameters ..44

Optional Parameters ...45

Recursion ..46

The On Error Instruction ..47

The Resume Command ..47

Queries Regarding Error Information ..48

Tips for Structured Error Handling ...48

Type...End Type...50

With...End With..51

3 The Runtime Library of OpenOffice.org Basic..............................55

Implicit and Explicit Type Conversions ..56

Checking the Content of Variables ..58

Working with Sets of Characters ...60

Accessing Parts of a String ...60

Search and Replace ...61

Formatting Strings ...62

Specification of Date and Time Details within the Program Code64

Extracting Date and Time Details ..65

Retrieving System Date and Time ...66

Administering Files ..67

Writing and Reading Text Files ..71

Displaying Messages ..74

Input Box For Querying Simple Strings ...75

Beep ..76

Shell ..76

Wait and WaitUntil ...77

Environ ..77

4 Introduction to the API...79

Properties ..81

Methods ..81

The supportsService Method ..83

Debug Properties ..83

API Reference ...84

Creating Context-Dependent Objects ...84

Named Access to Subordinate Objects ...85

Index-Based Access to Subordinate Objects ..87

Iterative Access to Subordinate Objects ..88

5 Working with OpenOffice.org Documents....................................89

ThisComponent ...90

Basic Information about Documents in OpenOffice.org ..91

Creating, Opening and Importing Documents ...92

Document Objects ..95

Details about various formatting options ...100

6 Text Documents...103

Paragraphs and Paragraph Portions ...104

The TextCursor ..113

Searching for Text Portions ...118

Replacing Text Portions ..121

Tables ..123

Text Frames ..128

Text Fields ...131

Bookmarks ..135

7 Spreadsheet Documents...137

Spreadsheets ..138

Rows and Columns..139

Cells and Ranges...141

Formatting Spreadsheet Documents...147

Cell Ranges ..161

Searching and Replacing Cell Contents ..164

8 Drawings and Presentations...167

Pages ..168

Elementary Properties of Drawing Objects ...169

An Overview of Various Drawing Objects ..180

Grouping Objects ..187

Rotating and Shearing Drawing Objects ...189

Searching and Replacing ..190

Working With Presentations ..191

9 Charts (Diagrams)..193

Title, Subtitle and Legend ...195

Background ...197

Diagram ..197

Wall and Floor ...198

Axes ..199

Properties of Axes ...200

Grids ...203

Axes Title ..204

3D Charts ..206

Stacked Charts ...207

Line Charts ..208

Area Charts ...208

Bar Charts ...209

Pie Charts ...209

10Databases...211

Queries ...214

Iteration of Tables ..217

Type-Specific Methods for Retrieving Values ..218

The ResultSet Variants ...219

Methods for Navigation in ResultSets ...220

Modifying Data Records ..221

11Dialogs..223

Creating Dialogs ...223

Closing Dialogs ...226

Access to Individual Control Elements ..227

Working With the Model of Dialogs and Control Elements ..227

Name and Title ..228

Position and Size ..228

Focus and Tabulator Sequence ..229

Multi-Page Dialogs ..230

Parameters ...236

Mouse Events ...237

Keyboard Events ...239

Focus Events ..240

Control Element-Specific Events ...241

Buttons ..242

Option Buttons ..243

Checkboxes ..244

Text Fields ...245

List Boxes ...248

12Forms..251

Determining Object Forms ..252

The Three Aspects of a Control Element Form ...253

Accessing the Model of Control Element Forms ...253

Accessing the View of Control Element Forms ...254

Accessing the Shape Object of Control Element Forms ...255

Buttons ..256

Option Buttons ..258

Checkboxes ..260

Text Fields ...261

List Boxes ...263

Tables ..266

Preface

This guide provides an introduction to programming with OpenOffice.org Basic. To
get the most out of this book, you should be familiar with other programming
languages. Extensive examples are provided to help you quickly develop your own
OpenOffice.org Basic programs.

Note – Throughout this document, the OpenOffice.org installation directory is
represented in syntax as install-dir.

9

1   C H A P T E R 1

1 OpenOffice.org BASIC Programming
Guide

This guide divides information about OpenOffice.org administration into several
chapters. The first three chapters introduce you to OpenOffice.org Basic:

 The Language of OpenOffice.org Basic
 Runtime Library
 Introduction to the API

These chapters provide an overview of OpenOffice.org Basic and should be read by
anyone who intends to write OpenOffice.org Basic programs. The remaining chapters
describe the individual components of the OpenOffice.org API in more detail and can
be read selectively as required:

 Working with Documents
 Text Documents
 Spreadsheet Documents
 Drawings and Presentations
 Charts (Diagrams)
 Databases
 Dialogs
 Forms

11

OpenOffice.org BASIC Programming Guide

About OpenOffice.org Basic

The OpenOffice.org Basic programming language has been developed especially for
OpenOffice.org and is firmly integrated in the Office package.

As the name suggests, OpenOffice.org Basic is a programming language from the
Basic family. Anyone who has previously worked with other Basic languages — in
particular with Visual Basic or Visual Basic for Applications (VBA) from Microsoft —
will quickly become accustomed to OpenOffice.org Basic. Large sections of the basic
constructs of OpenOffice.org Basic are compatible with Visual Basic.

The OpenOffice.org Basic programming language can be divided into four
components:

 The language of OpenOffice.org Basic: Defines the elementary linguistic
constructs, for example, for variable declarations, loops, and functions.

 The runtime library: Provides standard functions which have no direct reference to
OpenOffice.org, for example, functions for editing numbers, strings, date values,
and files.

 The OpenOffice.org API (Application Programming Interface): Permits access to
OpenOffice.org documents and allows these to be created, saved, modified, and
printed.

 The Dialog Editor: Creates personal dialog windows and provides scope for the
adding of control elements and event handlers.

Note – Compatibility between OpenOffice.org Basic and VBA relates to the
OpenOffice.org Basic language as well as the runtime library. The OpenOffice.org
API and the Dialog Editor are not compatible with VBA (standardizing these
interfaces would have made many of the concepts provided in OpenOffice.org
impossible).

Intended Users of OpenOffice.org Basic

The scope of application for OpenOffice.org Basic begins where the standard
functions of OpenOffice.org end. Routine tasks can therefore be automated in
OpenOffice.org Basic, links can be made to other programs — for example to a
database server — and complex activities can be performed at the press of a button
by using predefined scripts.

OpenOffice.org Basic offers complete access to all OpenOffice.org functions,

12 OpenOffice.org 3.1 BASIC Guide · April 2009

OpenOffice.org BASIC Programming Guide

supports all functions, modifies document types, and provides options for creating
personal dialog windows.

Use of OpenOffice.org Basic

OpenOffice.org Basic can be used by any OpenOffice.org user without any additional
programs or aids. Even in the standard installation, OpenOffice.org Basic has all the
components needed to create its own Basic macros, including:

 The integrated development environment (IDE) which provides an editor for
creating and testing macros.

 The interpreter, which is needed to run OpenOffice.org Basic macros.
 The interfaces to various OpenOffice.org applications, which allow for direct

access to Office documents.

More Information

The components of the OpenOffice.org API that are discussed in this guide were
selected based on their practical benefits for the OpenOffice.org Basic programmer.
In general, only parts of the interfaces are discussed. For a more detailed picture, see
the API reference.

The Developer's Guide describes the OpenOffice.org API in more detail than this
guide, but is primarily intended for Java and C++ programmers. Anyone who is
already familiar with OpenOffice.org Basic programming can find additional
information in the Developer's Guide on OpenOffice.org Basic and OpenOffice.org
programming.

Programmers who want to work directly with Java or C++ rather than OpenOffice.org
Basic should consult the OpenOffice.org Developer's Guide instead of this guide.
OpenOffice.org programming with Java or C++ is a considerably more complex
process than programming with OpenOffice.org Basic.

Chapter 1 · OpenOffice.org BASIC Programming Guide 13

http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html

2   C H A P T E R 2

2 The Language of OpenOffice.org
BASIC

OpenOffice.org Basic belongs to the family of Basic languages. Many parts of
OpenOffice.org Basic are identical to Microsoft Visual Basic for Applications and
Microsoft Visual Basic. Anyone who has already worked with these languages can
quickly become accustomed to OpenOffice.org Basic.

Programmers of other languages – such as Java, C++, or Delphi – should also find it
easy to familiarize themselves with OpenOffice.org Basic. OpenOffice.org Basic is a
fully-developed procedural programming language and no longer uses rudimentary
control structures, such as GoTo and GoSub.

You can also benefit from the advantages of object-oriented programming since an
interface in OpenOffice.org Basic enables you to use external object libraries. The
entire OpenOffice.org API is based on these interfaces, which are described in more
detail in the following chapters of this document.

This chapter provides an overview of the key elements and constructs of the
OpenOffice.org Basic language, as well as the framework in which applications and
libraries are oriented to OpenOffice.org Basic.

15

The Language of OpenOffice.org BASIC

Overview of a Basic Program

OpenOffice.org Basic is an interpreter language. Unlike C++ or Delphi, the
OpenOffice.org Basic compiler does not create executable or self-extracting files that
are capable of running automatically. Instead, you execute an OpenOffice.org Basic
program inside OpenOffice.org. The code is first checked for obvious errors and then
executed line by line.

Program Lines

The Basic interpreter's line-oriented execution produces one of the key differences
between Basic and other programming languages. Whereas the position of hard line
breaks in the source code of Java, C++, or Delphi programs is irrelevant, each line in
a Basic program forms a self-contained unit. Function calls, mathematical
expressions, and other linguistic elements, such as function and loop headers, must
be completed on the same line that they begin on.

If there is not enough space, or if this results in long lines, then several lines can be
linked together by adding underscores _. The following example shows how four lines
of a mathematical expression can be linked:

LongExpression = (Expression1 * Expression2) + _

(Expression3 * Expression4) + _

(Expression5 * Expression6) + _

(Expression7 * Expression8)

Note – The underscore must always be the last character in a linked line and cannot
be followed by a space or a tab, otherwise the code generates an error.

In addition to linking individual lines, OpenOffice.org Basic, you can use colons to
divide one line into several sections so that there is enough space for several
expressions. The assignments

a = 1

a = a + 1

a = a + 1

can be written as follows:

a = 1 : a = a + 1 : a = a + 1

16 OpenOffice.org 3.1 BASIC Guide · April 2009

Comments

Comments

In addition to the program code to be executed, an OpenOffice.org Basic program
can also contain comments that explain the individual parts of the program and
provide important information that can be helpful at a later point.

OpenOffice.org Basic provides two methods for inserting comments in the program
code:

 All characters that follow an apostrophe are treated as comments:
Dim A ' This is a comment for variable A

 The keyword Rem, followed by the comment:
Rem This comment is introduced by the keyword Rem.

A comment usually includes all characters up to the end of the line. OpenOffice.org
Basic then interprets the following line as a regular instruction again. If comments
cover several lines, each line must be identified as a comment:

Dim B ' This comment for variable B is relatively long
 ' and stretches over several lines. The
 ' comment character must therefore be repeated
 ' in each line.

Markers

A OpenOffice.org Basic program can contain dozens, hundreds, or even thousands
of markers, which are names for variables, constants, functions, and so on. When
you select a name for a marker, the following rules apply:

 Markers can only contain Latin letters, numbers, and underscores (_).
 The first character of a marker must be a letter or an underscore.
 Markers cannot contain special characters, such as ä â î ß.
 The maximum length of a marker is 255 characters.
 No distinction is made between uppercase and lowercase characters. The

OneTestVariable marker, for example, defines the same variable as
onetestVariable and ONETESTVARIABLE.
 There is, however, one exception to this rule: a distinction is made between
uppercase and lowercase characters for UNO-API constants. More information
about UNO is presented in Introduction to the OpenOffice.org API.

Chapter 2 · The Language of OpenOffice.org BASIC 17

http://wiki.services.openoffice.org/wiki/Documentation/BASIC_Guide/API_Intro

Markers

Note – The rules for constructing markers are different in OpenOffice.org Basic than
in VBA. For example, OpenOffice.org Basic only allows special characters in markers
when using Option Compatible, since they can cause problems in international
projects.

Here are a few examples of correct and incorrect markers:

Surname ' Correct
Surname5 ' Correct (number 5 is not the first digit)
First Name ' Incorrect (spaces are not permitted)
DéjàVu ' Incorrect (letters such as é, à are not permitted)
5Surnames ' Incorrect (the first character must not be a number)
First,Name ' Incorrect (commas and full stops are not permitted)

Enclosing a variable name in square brackets allows names that might otherwise be
disallowed; for example, spaces.

Dim [First Name] As String 'Space accepted in square brackets
Dim [DéjàVu] As Integer 'Special characters in square brackets
[First Name] = "Andrew"
[DéjàVu] = 2

Working With Variables

Implicit Variable Declaration

Basic languages are designed to be easy to use. As a result, OpenOffice.org Basic
enables the creation of a variable through simple usage and without an explicit
declaration. In other words, a variable exists from the moment that you include it in
your code. Depending on the variables that are already present, the following
example declares up to three new variables:

a = b + c

Declaring variables implicitly is not good programming practice because it can result
in the inadvertent introduction of a new variable through, for example, a typing error.
Instead of producing an error message, the interpreter initializes the typing error as a
new variable with a value of 0. It can be very difficult to locate errors of this kind in
your code.

18 OpenOffice.org 3.1 BASIC Guide · April 2009

Explicit Variable Declaration

Explicit Variable Declaration

To prevent errors caused by an implicit declaration of variables, OpenOffice.org Basic
provides a switch called:

Option Explicit

This must be listed in the first program line of each module and ensures that an error
message is issued if one of the variables used is not declared. The Option Explicit
switch should be included in all Basic modules.

In its simplest form, the command for an explicit declaration of a variable is as
follows:

Dim MyVar

This example declares a variable with the name MyVar and the type variant. A
variant is a universal variable that can record all conceivable values, including strings,
whole numbers, floating point figures, and Boolean values. Here are a few examples
of Variant variables:

MyVar = "Hello World" ' Assignment of a string
MyVar = 1 ' Assignment of a whole number
MyVar = 1.0 ' Assignment of a floating point number
MyVar = True ' Assignment of a Boolean value

The variables declared in the previous example can even be used for different
variable types in the same program. Although this provides considerable flexibility, it
is best to restrict a variable to one variable type. When OpenOffice.org Basic
encounters an incorrectly defined variable type in a particular context, an error
message is generated.

Use the following style when you make a type-bound variable declaration:

Dim MyVar As Integer ' Declaration of a variable of the integer type

The variable is declared as an integer type and can record whole number values. You
can also use the following style to declare an integer type variable:

Dim MyVar% ' Declaration of a variable of the integer type

The Dim instruction can record several variable declarations:

Dim MyVar1, MyVar2

If you want to assign the variables to a permanent type, you must make separate
assignments for each variable:

Dim MyVar1 As Integer, MyVar2 As Integer

If you do not declare the type for a variable, OpenOffice.org Basic assigns the
variable a variant type. For example, in the following variable declaration, MyVar1

Chapter 2 · The Language of OpenOffice.org BASIC 19

Explicit Variable Declaration

becomes a variant and MyVar2 becomes an integer:

Dim MyVar1, MyVar2 As Integer

The following sections list the variable types that are available in OpenOffice.org
Basic and describe how they can be used and declared.

Strings

Strings, together with numbers, form the most important basic types of
OpenOffice.org Basic. A string consists of a sequence of consecutive individual
characters. The computer saves the strings internally as a sequence of numbers
where each number represents one specific character.

From a Set of ASCII Characters to
Unicode

Character sets match characters in a string with a corresponding code (numbers and
characters) in a table that describes how the computer is to display the string.

The ASCII Character Set

The ASCII character set is a set of codes that represent numbers, characters, and
special symbols by one byte. The 0 to 127 ASCII codes correspond to the alphabet
and to common symbols (such as periods, parentheses, and commas), as well as
some special screen and printer control codes. The ASCII character set is commonly
used as a standard format for transferring text data between computers.

However, this character set does not include a range of special characters used in
Europe, such as â, ä, and î, as well as other character formats, such as the Cyrillic
alphabet.

20 OpenOffice.org 3.1 BASIC Guide · April 2009

From a Set of ASCII Characters to Unicode

The ANSI Character Set

Microsoft based its Windows product on the American National Standards Institute
(ANSI) character set, which was gradually extended to include characters that are
missing from the ASCII character set.

Code Pages

The ISO 8859 character sets provide an international standard. The first 128
characters of the ISO character set correspond to the ASCII character set. The ISO
standard introduces new character sets (code pages) so that more languages can
be correctly displayed. However, as a result, the same character value can represent
different characters in different languages.

Unicode

Unicode increases the length of a character to four bytes and combines different
character sets to create a standard to depict as many of the world's languages as
possible. Version 2.0 of Unicode is now supported by many programs — including
OpenOffice.org and OpenOffice.org Basic.

String Variables

OpenOffice.org Basic saves strings as string variables in Unicode. A string variable
can store up to 65535 characters. Internally, OpenOffice.org Basic saves the
associated Unicode value for every character. The working memory needed for a
string variable depends on the length of the string.

Example declaration of a string variable:

Dim Variable As String

You can also write this declaration as:

Dim Variable$

Note – When porting VBA applications, ensure that the maximum allowed string
length in OpenOffice.org Basic is observed (65535 characters).

Chapter 2 · The Language of OpenOffice.org BASIC 21

Specification of Explicit Strings

Specification of Explicit Strings

To assign an explicit string to a string variable, enclose the string in quotation marks
(").

Dim MyString As String
MyString = " This is a test"

To split a string across two lines, add an ampersand sign at the end of the first line:

Dim MyString As String
MyString = "This string is so long that it " & _
 "has been split over two lines."

To include a quotation mark (") in a string, enter it twice at the relevant point:

Dim MyString As String
MyString = "a ""-quotation mark." ' produces a "-quotation mark

Numbers

OpenOffice.org Basic supports five basic types for processing numbers:

 Integer
 Long Integer
 Single
 Double
 Currency

Integer Variables

Integer variables can store any whole number between -32768 and 32767. An integer
variable can take up to two bytes of memory. The type declaration symbol for an
integer variable is %. Calculations that use integer variables are very fast and are
particularly useful for loop counters. If you assign a floating point number to an
integer variable, the number is rounded up or down to the next whole number.

Example declarations for integer variables:

Dim Variable As Integer
Dim Variable%

22 OpenOffice.org 3.1 BASIC Guide · April 2009

Long Integer Variables

Long Integer Variables

Long integer variables can store any whole number between –2147483648 and
2147483647. A long integer variable can takes up to four bytes of memory. The type
declaration symbol for a long integer is &. Calculations with long integer variables are
very fast and are particularly useful for loop counters. If you assign a floating point
number to a long integer variable, the number is rounded up or down to the next
whole number.

Example declarations for long integer variables:

Dim Variable as Long
Dim Variable&

Single Variables

Single variables can store any positive or negative floating point number between
3.402823 x 1038 and 1.401298 x 10-45. A single variable can take up to four bytes of
memory. The type declaration symbol for a single variable is !.

Originally, single variables were used to reduce the computing time required for the
more precise double variables. However, these speed considerations no longer apply,
reducing the need for single variables.

Example declarations for single variables:

Dim Variable as Single
Dim Variable!

Double Variables

Double variables can store any positive or negative floating point numbers between
1.79769313486232 x 10308 and 4.94065645841247 x 10-324. A double variable can
take up to eight bytes of memory. Double variables are suitable for precise
calculations. The type declaration symbol is #.

Example declarations of double variables:

Dim Variable As Double
Dim Variable#

Chapter 2 · The Language of OpenOffice.org BASIC 23

Currency Variables

Currency Variables

Currency variables differ from the other variable types by the way they handle values.
The decimal point is fixed and is followed by four decimal places. The variable can
contain up to 15 numbers before the decimal point. A currency variable can store any
value between -922337203685477.5808 and +922337203685477.5807 and takes up
to eight bytes of memory. The type declaration symbol for a currency variable is @.

Currency variables are mostly intended for business calculations that yield
unforeseeable rounding errors due to the use of floating point numbers.

Example declarations of currency variables:

Dim Variable As Currency
Dim Variable@

Floats

The types single, double and currency are often collectively referred to as floats, or
floating-point number types. They can contain numerical values with decimal fractions
of various length, hence the name: The decimal point seems to be able to 'float'
through the number.

You can declare variables of the type float. The actual variable type (single, long,
currency) is determined the moment a value is assigned to the variable:

Dim A As Float
A = 1210.126

Specification of Explicit Numbers

Numbers can be presented in several ways, for example, in decimal format or in
scientific notation, or even with a different base than the decimal system. The
following rules apply to numerical characters in OpenOffice.org Basic:

24 OpenOffice.org 3.1 BASIC Guide · April 2009

Specification of Explicit Numbers

Whole Numbers

The simplest method is to work with whole numbers. They are listed in the source
text without a comma separating the thousand figure:

Dim A As Integer
Dim B As Float

A = 1210
B = 2438

The numbers can be preceded by both a plus (+) or minus (-) sign (with or without a
space in between):

Dim A As Integer
Dim B As Float

A = + 121
B = - 243

Decimal Numbers

When you type a decimal number, use a period (.) as the decimal point. This rule
ensures that source texts can be transferred from one country to another without
conversion.

Dim A As Integer
Dim B As Integer
Dim C As Float

A = 1223.53 ' is rounded
B = - 23446.46 ' is rounded
C = + 3532.76323

You can also use plus (+) or minus (-) signs as prefixes for decimal numbers (again
with or without spaces).

If a decimal number is assigned to an integer variable, OpenOffice.org Basic rounds
the figure up or down.

Exponential Writing Style

OpenOffice.org Basic allows numbers to be specified in the exponential writing style,
for example, you can write 1.5e-10 for the number 1.5 x 10-10 (0.00000000015). The
letter "e" can be lowercase or uppercase with or without a plus sign (+) as a prefix.

Here are a few correct and incorrect examples of numbers in exponential format:

Chapter 2 · The Language of OpenOffice.org BASIC 25

Specification of Explicit Numbers

Dim A As Double

A = 1.43E2 ' Correct
A = + 1.43E2 ' Correct (space between plus and basic number)
A = - 1.43E2 ' Correct (space between minus and basic number)
A = 1.43E-2 ' Correct (negative exponent)
A = 1.43E -2 ' Incorrect (spaces not permitted within the number)
A = 1,43E-2 ' Incorrect (commas not permitted as decimal points)
A = 1.43E2.2 ' Incorrect (exponent must be a whole number)

Note, that in the first and third incorrect examples that no error message is generated
even though the variables return incorrect values. The expression

A = 1.43E -2

is interpreted as 1.43 minus 2, which corresponds to the value -0.57. However, the
value 1.43 x 10-2 (corresponding to 0.0143) was the intended value. With the value

A = 1.43E2.2

OpenOffice.org Basic ignores the part of the exponent after the decimal point and
interprets the expression as

A = 1.43E2

Hexadecimal Values

In the hexadecimal system (base 16 system), a 2-digit number corresponds to
precisely one byte. This allows numbers to be handled in a manner which more
closely reflects machine architecture. In the hexadecimal system, the numbers 0 to 9
and the letters A to F are used as numbers. An A stands for the decimal number 10,
while the letter F represents the decimal number 15. OpenOffice.org Basic lets you
use whole numbered hexadecimal values, so long as they are preceded by &H.

Dim A As Long
A = &HFF ' Hexadecimal value FF, corresponds to the decimal value 255
A = &H10 ' Hexadecimal value 10, corresponds to the decimal value 16

Octal Values

OpenOffice.org Basic also understands the octal system (base 8 system), which uses
the numbers 0 to 7. You must use whole numbers that are preceded by &O.

Dim A As Long
A = &O77 ' Octal value 77, corresponds to the decimal value 63
A = &O10 ' Octal value 10, corresponds to the decimal value 8

26 OpenOffice.org 3.1 BASIC Guide · April 2009

Specification of Explicit Numbers

Boolean Values

Boolean variables can only contain one of two values: True or False. They are
suitable for binary specifications that can only adopt one of two statuses. A Boolean
value is saved internally as a two-byte integer value, where 0 corresponds to the
False and any other value to True. There is no type declaration symbol for Boolean
variables. The declaration can only be made using the supplement As Boolean.

Example declaration of a Boolean variable:

Dim Variable As Boolean

Date and Time

Date variables can contain date and time values. When saving date values,
OpenOffice.org Basic uses an internal format that permits comparisons and
mathematical operations on date and time values. There is no type declaration
symbol for date variables. The declaration can only be made using the supplement As
Date.

Example declaration of a date variable:

Dim Variable As Date

Arrays

In addition to simple variables (scalars), OpenOffice.org Basic also supports arrays
(data fields). A data field contains several variables, which are addressed through an
index.

Defining Arrays

Arrays can be defined as follows:

Chapter 2 · The Language of OpenOffice.org BASIC 27

Defining Arrays

Simple Arrays

An array declaration is similar to that of a simple variable declaration. However, unlike
the variable declaration, the array name is followed by parentheses which contain the
specifications for the number of elements. The expression

Dim MyArray(3)

declares an array that has four variables of the variant data type, namely MyArray(0),
MyArray(1), MyArray(2), and MyArray(3).

You can also declare type-specific variables in an array. For example, the following
line declares an array with four integer variables:

Dim MyInteger(3) As Integer

In the previous examples, the index for the array always begins with the standard
start value of zero. As an alternative, a validity range with start and end values can be
specified for the data field declaration. The following example declares a data field
that has six integer values and which can be addressed using the indexes 5 to 10:

Dim MyInteger(5 To 10) As Integer

The indexes do not need to be positive values. The following example also shows a
correct declaration, but with negative data field limits:

Dim MyInteger(-10 To -5) As Integer

It declares an integer data field with 6 values that can be addressed using the
indexes -10 to -5.

There are three limits that you must observe when you define data field indexes:

 The smallest possible index is -32768.
 The largest possible index is 32767.
 The maximum number of elements (within a data field dimension) is 16368.

Note – Other limit values sometimes apply for data field indexes in VBA. The same
also applies to the maximum number of elements possible per dimension. The values
valid there can be found in the relevant VBA documentation.

Specified Value for Start Index

The start index of a data field usually begins with the value 0. Alternatively, you can
change the start index for all data field declarations to the value 1 by using the call:

Option Base 1

28 OpenOffice.org 3.1 BASIC Guide · April 2009

Defining Arrays

The call must be included in the header of a module if you want it to apply to all array
declarations in the module. However, this call does not affect the UNO sequences
that are defined through the OpenOffice.org API whose index always begins with 0.
To improve clarity, you should avoid using Option Base 1.

The number of elements in an array is not affected if you use Option Base 1, only the
start index changes. The declaration

Option Base 1
' ...
Dim MyInteger(3)

creates 4 integer variables which can be described with the expressions
MyInteger(1), MyInteger(2), MyInteger(3), and MyInteger(4).

Note – In OpenOffice.org Basic, the expression Option Base 1 does not affect the
number of elements in an array as it does in VBA. It is, rather, the start index which
moves in OpenOffice.org Basic. While the declaration MyInteger(3) creates three
integer values in VBA with the indexes 1 to 3, the same declaration in OpenOffice.org
Basic creates four integer values with the indexes 1 to 4. By using Option
Compatible, OpenOffice.org Basic behaves like VBA.

Multi-Dimensional Data Fields

In addition to single dimensional data fields, OpenOffice.org Basic also supports work
with multi-dimensional data fields. The corresponding dimensions are separated from
one another by commas. The example

Dim MyIntArray(5, 5) As Integer

defines an integer array with two dimensions, each with 6 indexes (can be addressed
through the indexes 0 to 5). The entire array can record a total of 6 x 6 = 36 integer
values.

You can define hundreds of dimensions in OpenOffice.org Basic Arrays; however, the
amount of available memory limits the number of dimensions you can have.

Dynamic Changes in the Dimensions of Data Fields

The previous examples are based on data fields of a specified dimension. You can
also define arrays in which the dimension of the data fields dynamically changes. For
example, you can define an array to contain all of the words in a text that begin with
the letter A. As the number of these words is initially unknown, you need to be able to

Chapter 2 · The Language of OpenOffice.org BASIC 29

Defining Arrays

subsequently change the field limits. To do this in OpenOffice.org Basic, use the
following call:

ReDim MyArray(10)

Note – Unlike VBA, where you can only dimension dynamic arrays by using Dim
MyArray(), OpenOffice.org Basic lets you change both static and dynamic arrays
using ReDim.

The following example changes the dimension of the initial array so that it can record
11 or 21 values:

Dim MyArray(4) As Integer ' Declaration with five elements
' ...
ReDim MyArray(10) As Integer ' Increase to 11 elements
' ...
ReDim MyArray(20) As Integer ' Increase to 21 elements

When you reset the dimensions of an array, you can use any of the options outlined
in the previous sections. This includes declaring multi-dimensional data fields and
specifying explicit start and end values. When the dimensions of the data field are
changed, all contents are lost. If you want to keep the original values, use the
Preserve command:

Dim MyArray(10) As Integer ' Defining the initial
' dimensions
' ...
ReDim Preserve MyArray(20) As Integer ' Increase in
' data field, while
' retaining content

When you use Preserve, ensure that the number of dimensions and the type of
variables remain the same.

Note – Unlike VBA, where only the upper limit of the last dimension of a data field
can be changed through Preserve, OpenOffice.org Basic lets you change other
dimensions as well.

If you use ReDim with Preserve, you must use the same data type as specified in the
original data field declaration.

Defining values for arrays

Values for the Array fields can be stored like this:

MyArray(0) = "somevalue"

30 OpenOffice.org 3.1 BASIC Guide · April 2009

Accessing Arrays

Accessing Arrays

Accessing values in an array works like this:

MsgBox("Value:" & MyArray(0))

Array Creation, value assignment and
access example

And example containing all steps that show real array usage:

Sub TestArrayAxess

 Dim MyArray(3)

 MyArray(0) = "lala"

 MsgBox("Value:" & MyArray(0))

End Sub

Scope and Life Span of Variables

A variable in OpenOffice.org Basic has a limited life span and a limited scope from
which it can be read and used in other program fragments. The amount of time that a
variable is retained, as well as where it can be accessed from, depends on its
specified location and type.

Local Variables

Variables that are declared in a function or a procedure are called local variables:

Sub Test
 Dim MyInteger As Integer
 ' ...
End Sub

Local variables only remain valid as long as the function or the procedure is
executing, and then are reset to zero. Each time the function is called, the values
generated previously are not available.

Chapter 2 · The Language of OpenOffice.org BASIC 31

Local Variables

To keep the previous values, you must define the variable as Static:

Sub Test
 Static MyInteger As Integer
 ' ...
End Sub

Note – Unlike VBA, OpenOffice.org Basic ensures that the name of a local variable
is not used simultaneously as a global and a private variable in the module header.
When you port a VBA application to OpenOffice.org Basic, you must change any
duplicate variable names.

Public Domain Variables

Public domain variables are defined in the header section of a module by the
keyword Dim. These variables are available to all of the modules in their library:

Module A:

Dim A As Integer
Sub Test
 Flip
 Flop
End Sub

Sub Flip
 A = A + 1
End Sub

Module B:

Sub Flop
 A = A - 1
End Sub

The value of variable A is not changed by the Test function, but is increased by one in
the Flip function and decreased by one in the Flop function. Both of these changes
to the variable are global.

You can also use the keyword Public instead of Dim to declare a public domain
variable:

Public A As Integer

A public domain variable is only available so long as the associated macro is
executing and then the variable is reset.

32 OpenOffice.org 3.1 BASIC Guide · April 2009

Global Variables

Global Variables

In terms of their function, global variables are similar to public domain variables,
except that their values are retained even after the associated macro has executed.
Global variables are declared in the header section of a module using the keyword
Global:

Global A As Integer

Private Variables

Private variables are only available in the module in which they are defined. Use the
keyword Private to define the variable:

Private MyInteger As Integer

If several modules contain a Private variable with the same name, OpenOffice.org
Basic creates a different variable for each occurrence of the name. In the following
example, both module A and B have a Private variable called C. The Test function
first sets the Private variable in module A and then the Private variable in module B.

Module A:

Private C As Integer

Sub Test
 SetModuleA ' Sets the variable C from module A
 SetModuleB ' Sets the variable C from module B
 ShowVarA ' Shows the variable C from module A (= 10)
 ShowVarB ' Shows the variable C from module B (= 20)
End Sub

Sub SetmoduleeA
 C = 10
End Sub

Sub ShowVarA
 MsgBox C ' Shows the variable C from module A.
End Sub

Module B:

Private C As Integer

Sub SetModuleB
 C = 20
End Sub

Sub ShowVarB

Chapter 2 · The Language of OpenOffice.org BASIC 33

Private Variables

 MsgBox C ' Shows the variable C from module B.
End Sub

Constants

Constants are values which may be used but not changed by the program.

Defining Constants

In OpenOffice.org Basic, use the keyword Const to declare a constant.

Const A = 10

You can also specify the constant type in the declaration:

Const B As Double = 10

Scope of Constants

Constants have the same scope as variables (see Scope and Life Span of Variables),
but the syntax is slightly different. A Const definition in the module header is available
to the code in that module. To make the definition available to other modules, add the
Public keyword.

Public Const one As Integer = 1

Predefined Constants

OpenOffice.org Basic predefines several constants. Among the most useful are:

 True and False, for Boolean assignment statements
 PI as a type Double numeric value

Dim bHit as Boolean

34 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=104493

Predefined Constants

bHit = True

Dim dArea as Double, dRadius as Double
' ... (assign a value to dRadius)
dArea = PI * dRadius * dRadius

Operators

OpenOffice.org Basic understands common mathematical, logical, and comparison
operators.

Mathematical Operators

Mathematical operators can be applied to all numbers types, whereas the + operator
can also be used to link strings.

+ Addition of numbers and date values, linking of strings
& Link strings
- Subtraction of numbers and date values
* Multiplication of numbers
/ Division of numbers
\ Division of numbers with a whole number result (rounded)
^ Raising the power of numbers
MOD modulo operation (calculation of the remainder of a division)

Although you can use the + operator to link strings, the + operator can become
confused when linking a number to a string. The & operator is safer when dealing
with strings because it assumes that all arguments should be strings, and converts
the arguments to strings if they are not strings.

Logical Operators

Logical operators allow you to link elements according to the rules of Boolean
algebra. If the operators are applied to Boolean values, the link provides the result
required directly. If used in conjunction with integer and long integer values, the
linking is done at the bit level.

Chapter 2 · The Language of OpenOffice.org BASIC 35

Logical Operators

AND And linking
OR Or linking
XOR Exclusive or linking
NOT Negation
EQV Equivalent test (both parts True or False)
IMP Implication (if the first expression is true, then the second must also be

true)

Comparison Operators

Comparison operators can be applied to all elementary variable types (numbers, date
details, strings, and Boolean values).

= Equality of numbers, date values and strings
<> Inequality of numbers, date values and strings
> Greater than check for numbers, date values and strings
>= Greater than or equal to check for numbers, date values and strings
< Less than check for numbers, date values and strings
<= Less than or equal to check for numbers, date values and strings

Note – OpenOffice.org Basic does not support the VBA Like comparison operator.

Branching

Use branching statements to restrict the execution of a code block until a particular
condition is satisfied.

If...Then...Else

The most common branching statement is the If statement as shown in the following
example:

If A > 3 Then
 B = 2
End If

36 OpenOffice.org 3.1 BASIC Guide · April 2009

If...Then...Else

The B = 2 assignment only occurs when value of variable A is greater than three. A
variation of the If statement is the If/Else clause:

If A > 3 Then
 B = 2
Else
 B = 0
End If

In this example, the variable B is assigned the value of 2 when A is greater than 3,
otherwise B is assigned the value of 0.

For more complex statements, you can cascade the If statement, for example:

If A = 0 Then
 B = 0
ElseIf A < 3 Then
 B = 1
Else
 B = 2
End If

If the value of variable A equals zero, B is assigned the value 0. If A is less than 3 (but
not equal to zero), then B is assigned the value 1. In all other instances (that is, if A is
greater than or equal to 3), B is assigned the value 2.

Select...Case

The Select...Case instruction is an alternative to the cascaded If statement and is
used when you need to check a value against various conditions:

Select Case DayOfWeek
 Case 1:
 NameOfWeekday = "Sunday"
 Case 2:
 NameOfWeekday = "Monday"
 Case 3:
 NameOfWeekday = "Tuesday"
 Case 4:
 NameOfWeekday = "Wednesday"
 Case 5:
 NameOfWeekday = "Thursday"
 Case 6:
 NameOfWeekday = "Friday"
 Case 7:
 NameOfWeekday = "Saturday"
End Select

In this example, the name of a weekday corresponds to a number, so that the
DayOfWeek variable is assigned the value of 1 for Sunday, 2 for Monday value, and so

Chapter 2 · The Language of OpenOffice.org BASIC 37

Select...Case

on.

The Select command is not restricted to simple 1:1 assignments — you can also
specify comparison operators or lists of expressions in a Case branch. The following
example lists the most important syntax variants:

Select Case Var
 Case 1 To 5
 ' ... Var is between the numbers 1 and 5 (including the values 1 and 5).
 Case > 100
 ' ... Var is greater than 100
 Case 6, 7, 8
 ' ... Var is 6, 7 or 8
 Case 6, 7, 8, > 15, < 0
 ' ... Var is 6, 7, 8, greater than 15, or less than 0
 Case Else
 ' ... all other instances
End Select

Now consider a misleading (advanced) example, and a common error:

Select Case Var
 Case Var = 8
 ' ... Var is 0
 Case Else
 ' ... all other instances
End Select

The statement (Var = 8) evaluates to TRUE if Var is 8, and FALSE otherwise. TRUE
is -1 and FALSE is 0. The Select Case statement evaluates the expression, which is
TRUE or FALSE, and then compares that value to Var. When Var is 0, there is a
match. If you understand the last example, then you also know why this example
does not do what it appears

Select Case Var
 Case Var > 8 And Var < 11
 ' ... Var is 0
 Case Else
 ' ... all other instances
End Select

Loops

A loop executes a code block for the number of passes that are specified. You can
also have loops with an undefined number of passes.

38 OpenOffice.org 3.1 BASIC Guide · April 2009

For...Next

For...Next

The For...Next loop has a fixed number of passes. The loop counter defines the
number of times that the loop is to be executed. In the following example, variable I
is the loop counter, with an initial value of 1. The counter is incremented by 1 at the
end of each pass. When variable I equals 10, the loop stops.

Dim I
For I = 1 To 10
 ' ... Inner part of loop
Next I

If you want to increment the loop counter by a value other than 1 at the end of each
pass, use the Step function:

Dim I
For I = 1 To 10 Step 0.5
 ' ... Inner part of loop
Next I

In the preceding example, the counter is increased by 0.5 at the end of each pass
and the loop is executed 19 times.

You can also use negative step values:

Dim I
For I = 10 To 1 Step -1
 ' ... Inner part of loop
Next I

In this example, the counter begins at 10 and is reduced by 1 at the end of each pass
until the counter is 1.

The Exit For instruction allows you to exit a For loop prematurely. In the following
example, the loop is terminated during the fifth pass:

Dim I
For I = 1 To 10
 If I = 5 Then
 Exit For
 End If
 ' ... Inner part of loop
Next I

For Each

The For Each...Next loop variation in VBA is supported in OpenOffice.org Basic. For
Each loops do not use an explicit counter like a For...Next loop does. A For Each

Chapter 2 · The Language of OpenOffice.org BASIC 39

For Each

loop says "do this to everything in this set", rather than "do this n times". For
example:

Const d1 = 2
Const d2 = 3
Const d3 = 2
Dim i
Dim a(d1, d2, d3)
For Each i In a()
 ' ... Inner part of loop
Next i

The loop will execute 36 times.

Do...Loop

The Do...Loop is not linked to a fixed number of passes. Instead, the Do...Loop is
executed until a certain condition is met. There are four versions of the Do...Loop. In
the first two examples, the code within the loop may not be executed at all ("do 0
times" logic). In the latter examples, the code will be executed at least once. (In the
following examples, A > 10 represents any condition):

1 The Do While...Loop version

Do While A > 10
 ' ... loop body
Loop

checks whether the condition after the While is true before every pass and only then
executes the loop.

2 The Do Until...Loop version

Do Until A > 10
 ' ... loop body
Loop

executes the loop as long as the condition after the Until evaluates to false.

3 The Do...Loop While version

Do
 ' ... loop body
Loop While A > 10

only checks the condition after the first loop pass and terminates if the condition after
the While evaluates to false.

40 OpenOffice.org 3.1 BASIC Guide · April 2009

Do...Loop

4 The Do...Loop Until version

Do
 ' ... loop body
Loop Until A > 10

also checks its condition after the first pass, but terminates if the condition after the
Until evaluates to true.

As in the For...Next loop, the Do...Loop also provides a terminate command. The
Exit Do command can exit at loop at any point within the loop.

Do
 If A = 4 Then
 Exit Do
 End If
 ' ... loop body
Loop While A > 10

While...Wend

The While...Wend loop construct works exactly the same as the Do While...Loop,
but with the disadvantage that there is no Exit command available. The following two
loops produce identical results:

Do While A > 10
 ' ... loop body
Loop

While A > 10
 ' ... loop body
Wend

Programming Example: Sorting With
Embedded Loops

There are many ways to use loops, for example, to search lists, return values, or
execute complex mathematical tasks. The following example is an algorithm that
uses two loops to sort a list by names.

Sub Sort
 Dim Entry(1 To 10) As String
 Dim Count As Integer
 Dim Count2 As Integer
 Dim Temp As String

Chapter 2 · The Language of OpenOffice.org BASIC 41

Programming Example: Sorting With Embedded Loops

 Entry(1) = "Patty"
 Entry(2) = "Kurt"
 Entry(3) = "Thomas"
 Entry(4) = "Michael"
 Entry(5) = "David"
 Entry(6) = "Cathy"
 Entry(7) = "Susie"
 Entry(8) = "Edward"
 Entry(9) = "Christine"
 Entry(10) = "Jerry"

 For Count = 1 To 9
 For Count2 = Count + 1 To 10
 If Entry(Count) > Entry(Count2) Then
 Temp = Entry(Count)
 Entry(Count) = Entry(Count2)
 Entry(Count2) = Temp
 End If
 Next Count2
 Next Count

 For Count = 1 To 10
 Print Entry(Count)
 Next Count

End Sub

The values are interchanged as pairs several times until they are finally sorted in
ascending order. Like bubbles, the variables gradually migrate to the right position.
For this reason, this algorithm is also known as a Bubble Sort.

Procedures and Functions

Procedures and functions form pivotal points in the structure of a program. They
provide the framework for dividing a complex problem into various sub-tasks.

Procedures

A procedure executes an action without providing an explicit value. Its syntax is

Sub Test
 ' ... here is the actual code of the procedure
End Sub

The example defines a procedure called Test that contains code that can be

42 OpenOffice.org 3.1 BASIC Guide · April 2009

http://en.wikipedia.org/wiki/Bubble_sort

Procedures

accessed from any point in the program. The call is made by entering the procedure
name at the relevant point of the program.

Functions

A function, just like a procedure, combines a block of programs to be executed into
one logical unit. However, unlike a procedure, a function provides a return value.

Function Test
 ' ... here is the actual code of the function
 Test = 123
End Function

The return value is assigned using simple assignment. The assignment does not
need to be placed at the end of the function, but can be made anywhere in the
function.

The preceding function can be called within a program as follows:

Dim A
A = Test

The code defines a variable A and assigns the result of the Test function to it.

The return value can be overwritten several times within the function. As with classic
variable assignment, the function in this example returns the value that was last
assigned to it.

Function Test
 Test = 12
 ' ...
 Test = 123
End Function

In this example, the return value of the function is 123.

If nothing is assigned, the function returns a zero value (number 0 for numerical
values and a blank for strings).

The return value of a function can be any type. The type is declared in the same way
as a variable declaration:

Function Test As Integer
 ' ... here is the actual code of the function
End Function

Chapter 2 · The Language of OpenOffice.org BASIC 43

Terminating Procedures and Functions Prematurely

Terminating Procedures and Functions
Prematurely

In OpenOffice.org Basic, you can use the Exit Sub and Exit Function commands to
terminate a procedure or function prematurely, for example, for error handling. These
commands stop the procedure or function and return the program to the point at
which the procedure or function was called up.

The following example shows a procedure which terminates implementation when the
ErrorOccured variable has the value True.

Sub Test
 Dim ErrorOccured As Boolean
 ' ...
 If ErrorOccured Then
 Exit Sub
 End If
 ' ...
End Sub

Passing Parameters

Functions and procedures can receive one or more parameters. Essential
parameters must be enclosed in parentheses after the function or procedure names.
The following example defines a procedure that expects an integer value A and a
string B as parameters.

Sub Test (A As Integer, B As String)
 ' ...
End Sub

Parameters are normally passed by Reference in OpenOffice.org Basic. Changes
made to the variables are retained when the procedure or function is exited:

Sub Test
 Dim A As Integer
 A = 10
 ChangeValue(A)
 ' The parameter A now has the value 20
End Sub

Sub ChangeValue(TheValue As Integer)
 TheValue = 20
End Sub

In this example, the value A that is defined in the Test function is passed as a
parameter to the ChangeValue function. The value is then changed to 20 and passed

44 OpenOffice.org 3.1 BASIC Guide · April 2009

http://en.wikipedia.org/wiki/Pass_by_reference#Call_by_reference
http://en.wikipedia.org/wiki/Pass_by_reference#Call_by_reference

Passing Parameters

to TheValue, which is retained when the function is exited.

You can also pass a parameter as a value if you do not want subsequent changes to
the parameter to affect the value that is originally passed. To specify that a parameter
is to be passed as a value, ensure that the ByVal keyword precedes the variable
declaration in the function header.

In the preceding example, if we replace the ChangeValue function then the
superordinate variable A remains unaffected by this change. After the call for the
ChangeValue function, variable A retains the value 10.

Sub ChangeValue(ByVal TheValue As Integer)
 TheValue = 20
End Sub

Note – The method for passing parameters to procedures and functions in
OpenOffice.org Basic is virtually identical to that in VBA. By default, the parameters
are passed by reference. To pass parameters as values, use the ByVal keyword. In
VBA, you can also use the keyword ByRef to force a parameter to be passed by
reference. OpenOffice.org Basic recognizes but ignores this keyword, because this is
already the default procedure in OpenOffice.org Basic.

Optional Parameters

Functions and procedures can only be called up if all the necessary parameters are
passed during the call.

OpenOffice.org Basic lets you define parameters as optional, that is, if the
corresponding values are not included in a call, OpenOffice.org Basic passes an
empty parameter. In the following example the A parameter is obligatory, whereas the
B parameter is optional.

Sub Test(A As Integer, Optional B As Integer)
 ' ...
End Sub

The IsMissing function checks whether a parameter has been passed or is left out.

Sub Test(A As Integer, Optional B As Integer)
 Dim B_Local As Integer
 ' Check whether B parameter is actually present
 If Not IsMissing (B) Then
 B_Local = B ' B parameter present
 Else
 B_Local = 0 ' B parameter missing -> default value 0
 End If

Chapter 2 · The Language of OpenOffice.org BASIC 45

Optional Parameters

 ' ... Start the actual function
End Sub

The example first tests whether the B parameter has been passed and, if necessary,
passes the same parameter to the internal B_Local variable. If the corresponding
parameter is not present, then a default value (in this instance, the value 0) is passed
to B_Local rather than the passed parameter.

Note – The ParamArray keyword present in VBA is not supported in OpenOffice.org
Basic.

Recursion

A recursive procedure or function is one that has the ability to call itself until it detects
that some base condition has been satisfied. When the function is called with the
base condition, a result is returned.

The following example uses a recursive function to calculate the factorial of the
numbers 42, -42, and 3.14:

Sub Main
 Msgbox CalculateFactorial(42) ' Displays 1,40500611775288E+51
 Msgbox CalculateFactorial(-42) ' Displays "Invalid number for
factorial!"
 Msgbox CalculateFactorial(3.14) ' Displays "Invalid number for
factorial!"
End Sub

Function CalculateFactorial(Number)
 If Number < 0 Or Number <> Int(Number) Then
 CalculateFactorial = "Invalid number for factorial!"
 ElseIf Number = 0 Then
 CalculateFactorial = 1
 Else
 ' This is the recursive call:
 CalculateFactorial = Number * CalculateFactorial(Number - 1)
 Endif
End Function

The example returns the factorial of the number 42 by recursively calling the
CalculateFactorial function until it reaches the base condition of 0! = 1.

Note – The recursion levels are set at different levels based on the software
platform. For Windows the recursion level is 5800. For Solaris and Linux, an
evaluation of the stacksize is performed and the recursion level is calculated.

46 OpenOffice.org 3.1 BASIC Guide · April 2009

Recursion

Error Handling

Correct handling of error situations is one of the most time-consuming tasks of
programming. OpenOffice.org Basic provides a range of tools for simplifying error
handling.

The On Error Instruction

The On Error instruction is the key to any error handling:

Sub Test
 On Error Goto ErrorHandler
 ' ... undertake task during which an error may occur
 Exit Sub
 ErrorHandler:
 ' ... individual code for error handling
End Sub

The On Error Goto ErrorHandler line defines how OpenOffice.org Basic proceeds in
the event of an error. The Goto ErrorHandler ensures that OpenOffice.org Basic
exits the current program line and then executes the ErrorHandler: code.

The Resume Command

The Resume Next command continues the program from the line that follows where
the error occurred in the program after the code in the error handler has been
executed:

ErrorHandler:
 ' ... individual code for error handling
 Resume Next

Use the Resume Proceed command to specify a jump point for continuing the program
after error handling:

ErrorHandler:
 ' ... individual code for error handling
 Resume Proceed

Proceed:
 ' ... the program continues here after the error

Chapter 2 · The Language of OpenOffice.org BASIC 47

The Resume Command

To continue a program without an error message when an error occurs, use the
following format:

Sub Test
 On Error Resume Next
 ' ... perform task during which an error may occur
End Sub

Use the On Error Resume Next command with caution as its effect is global.

Queries Regarding Error Information

In error handling, it is useful to have a description of the error and to know where and
why the error occurred:

 The Err variable contains the number of errors that has occurred.
 The Error$ variable contains a description of the error.
 The Erl variable contains the line number where the error occurred.

The call

MsgBox "Error " & Err & ": " & Error$ & " (line : " & Erl & ")"

shows how the error information can be displayed in a message window.

Note – Whereas VBA summarizes the error messages in a statistical object called
Err, OpenOffice.org Basic provides the Err, Error$, and Erl variables.

The status information remains valid until the program encounters a Resume or On
Error command, whereupon the information is reset.

Note – In VBA, the Err.Clear method of the Err object resets the error status after
an error occurs. In OpenOffice.org Basic, this is accomplished with the On Error or
Resume commands.

Tips for Structured Error Handling

Both the definition command, On Error, and the return command, Resume, are
variants of the Goto construct.

48 OpenOffice.org 3.1 BASIC Guide · April 2009

Tips for Structured Error Handling

If you want to cleanly structure your code to prevent generating errors when you use
this construct, you should not use jump commands without monitoring them.

Care should be taken when you use the On Error Resume Next command as this
dismisses all open error messages.

The best solution is to use only one approach for error handling within a program -
keep error handling separate from the actual program code and do not jump back to
the original code after the error occurs.

The following code is an example of an error handling procedure:

Sub Example
 ' Define error handler at the start of the function
 On Error Goto ErrorHandler
 ' ... Here is the actual program code
 On Error Goto 0 ' Deactivate error handling
 ' End of regular program implementation
 Exit Sub

 ' Start point of error handling
 ErrorHandler:
 ' Check whether error was expected
 If Err = ExpectedErrorNo Then
 ' ... Process error
 Else
 ' ... Warning of unexpected error
 End If
 On Error Goto 0 ' Deactivate error handling
End Sub

This procedure begins with the definition of an error handler, followed by the actual
program code. At the end of the program code, the error handling is deactivated by
the On Error Goto 0 call and the procedure implementation is ended by the Exit Sub
command (not to be confused with End Sub).

The example first checks if the error number corresponds to the expected number (as
stored in the imaginary ExpectedErrorNo constant) and then handles the error
accordingly. If another error occurs, the system outputs a warning. It is important to
check the error number so that unanticipated errors can be detected.

The On Error Goto 0 call at the end of the code resets the status information of the
error (the error code in the Err system variables) so that an error occurring at a later
date can be clearly recognized.

Chapter 2 · The Language of OpenOffice.org BASIC 49

Tips for Structured Error Handling

Other Instructions

Type...End Type

A struct is a collection of data fields, that can be manipulated as a single item. In
older terms, you may think of a struct as a record, or part of a record.

The API often uses pre-defined structs, but these are UNO structs, a highly-
specialized kind of struct.

Definition

With the Type...End Type statements, you can define your own (non-UNO) structs:

Type aMenuItem 'assign the name of the type
 'Define the data fields within the struct. Each
 ' definition looks like a Dim statement, without the "Dim".
 aCommand as String
 aText as String
End Type 'close the definition

Instance

The Type definition is only a pattern or template, not a set of actual variables. To
make an instance of the type, actual variables that can be read and stored, use the
Dim as New statement:

Dim maItem as New aMenuItem

Scope

As shown in the example below, the Type definition may be written at the start of a
module (before the first Sub or Function). The definition will then be available to all
routines in the module.

As of OpenOffice.org Version 3.0, unlike variables, there is no way to make the
definition accessible outside of the module.

50 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/wiki/Documentation/BASIC_Guide/API_Intro

Type...End Type

An instance of the new type is a variable, and follows the usual rules for variable
scope (see Scope and Life Span of Variables).

An example of how to use the definition, and how to reference the fields within an
instance, appears in the section on With...End With.

With...End With

Qualifiers

In general, Basic does not look inside a container, such as an Object, to see what
names might be defined there. If you want to use such a name, you must tell Basic
where to look. You do that by using the name of the object as a qualifier. Write it
before the inner name, and separate it by a period:

MyObject.SomeName

Since containers may hold other containers, you may need more than one qualifier.
Write the qualifiers in order, from outer to inner:

OuterObject.InnerObject.FarInsideObject.SomeName

These names may also be described as, "concatenated with the dot-operator ('.')".

The With Alternative

The With...End With bracketing statements provide an alternative to writing out all
the qualifiers, every time - and some of the qualifiers in the API can be quite long. You
specify the qualifiers in the With statement. Until Basic encounters the End With
statement, it looks for partly-qualified names: names that begin with a period (unary
dot-operator). The compiler uses the qualifiers from the With as though they were
written in front of the partly-qualified name.

Example 1: A User-defined Struct

This example shows how you may define and use a struct, and how to reference the
items within it, both with and without With. Either way, the names of the data fields
(from the Type definition) must be qualified by the name of the instance (from the Dim

Chapter 2 · The Language of OpenOffice.org BASIC 51

http://wiki.services.openoffice.org/wiki/Documentation/BASIC_Guide/Scope_of_Variables

With...End With

statement).

Type aMenuItem
 aCommand as String
 aText as String
End Type

Sub Main
 'Create an instance of the user-defined struct.
 ' Note the keyword, "New".
 Dim maItem as New aMenuItem
 With maItem
 .aCommand = ".uno:Copy"
 .aText = "~Copy"
 End With

 MsgBox "Command: " & maItem.aCommand & Chr(13) _
 & "Text: " & maItem.aText
End Sub

Example 2: Case statement

In Cells and Ranges, the following example has the qualifiers in the Case statements
written out completely, for clarity. You can write it more easily, this way:

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
Cell = Sheet.getCellByPosition(1,1) 'Cell "B2" (0-based!)

Cell.Value = 1000

With com.sun.star.table.CellContentType
 Select Case Cell.Type
 Case .EMPTY
 MsgBox "Content: Empty"
 Case .VALUE
 MsgBox "Content: Value"
 Case .TEXT
 MsgBox "Content: Text"
 Case .FORMULA
 MsgBox "Content: Formula"
 End Select
End With

Notice that the With construct must be entirely outside of the Select construct.

52 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=106255

3   C H A P T E R 3

3 The Runtime Library of
OpenOffice.org Basic

The following sections present the central functions of the runtime library:

 Conversion Functions
 Strings
 Date and Time
 Files and Directories
 Message and Input Boxes
 Other Functions

Conversion Functions

In many situations, circumstances arise in which a variable of one type has to be
changed into a variable of another type.

53

Implicit and Explicit Type Conversions

Implicit and Explicit Type Conversions

The easiest way to change a variable from one type to another is to use an
assignment.

Dim A As String
Dim B As Integer

B = 101
A = B

In this example, variable A is a string, and variable B is an integer. OpenOffice.org
Basic ensures that variable B is converted to a string during assignment to variable A.
This conversion is much more elaborate than it appears: the integer B remains in the
working memory in the form of a two-byte long number. A, on the other hand, is a
string, and the computer saves a one- or two-byte long value for each character
(each number). Therefore, before copying the content from B to A, B has to be
converted into A's internal format.

Unlike most other programming languages, Basic performs type conversion
automatically. However, this may have fatal consequences. Upon closer inspection,
the following code sequence

Dim A As String
Dim B As Integer
Dim C As Integer

B = 1
C = 1
A = B + C

which at first glance seems straightforward, ultimately proves to be something of a
trap. The Basic interpreter first calculates the result of the addition process and then
converts this into a string, which, as its result, produces the string 2.

If, on the other hand, the Basic interpreter first converts the start values B and C into a
string and applies the plus operator to the result, it produces the string 11.

The same applies when using variant variables:

Dim A
Dim B
Dim C

B = 1
C = "1"
A = B + C

Since variant variables may contain both numbers and strings, it is unclear whether
variable A is assigned the number 2 or the string 11.

54 OpenOffice.org 3.1 BASIC Guide · April 2009

Implicit and Explicit Type Conversions

The error sources noted for implicit type conversions can only be avoided by careful
programming; for example, by not using the variant data type.

To avoid other errors resulting from implicit type conversions, OpenOffice.org Basic
offers a range of conversion functions, which you can use to define when the data
type of an operation should be converted:

 CStr(Var)

 converts any data type into a string.

 CInt(Var)

 converts any data types into an integer value.

 CLng(Var)

 converts any data types into a long value.

 CSng(Var)

 converts any data types into a single value.

 CDbl(Var)

 converts any data types into a double value.

 CBool(Var)

 converts any data types into a Boolean value.

 CDate(Var)

 converts any data types into a date value.

You can use these conversion functions to define how OpenOffice.org Basic should
perform these type conversion operations:

Dim A As String
Dim B As Integer
Dim C As Integer

B = 1
C = 1
A = CStr(B + C) ' B and C are added together first, then
 ' converted to the string "2"
A = CStr(B) + CStr(C) ' B and C are converted into a string,then
 ' combined to produce the string "11"

During the first addition in the example, OpenOffice.org Basic first adds the integer
variables and then converts the result into a chain of characters. A is assigned the
string 2. In the second instance, the integer variables are first converted into two
strings and then linked with one another by means of the assignment. A is therefore
assigned the string 11.

Chapter 3 · The Runtime Library of OpenOffice.org Basic 55

Implicit and Explicit Type Conversions

The numerical CSng and CDbl conversion functions also accept decimal numbers. The
symbol defined in the corresponding country-specific settings must be used as the
decimal point symbol. Conversely, the CStr methods use the currently selected
country-specific settings when formatting numbers, dates and time details.

The Val function is different from the Csng, Cdbl and Cstr methods. It converts a
string into a number; however it always expects a period to be used as the decimal
point symbol.

Dim A As String
Dim B As Double

A = "2.22"
B = Val(A) ' Is converted correctly regardless of the
 ' country-specific settings

Checking the Content of Variables

In some instances, the date cannot be converted:

Dim A As String
Dim B As Date

A = "test"
B = A ' Creates error message

In the example shown, the assignment of the test string to a date variable makes no
sense, so the Basic interpreter reports an error. The same applies when attempting to
assign a string to a Boolean variable:

Dim A As String
Dim B As Boolean

A = "test"
B = A ' Creates error message

Again, the basic interpreter reports an error.

These error messages can be avoided by checking the program before an
assignment, in order to establish whether the content of the variable to be assigned
matches the type of the target variable. OpenOffice.org Basic provides the following
test functions for this purpose:

 IsNumeric(Value)

 checks whether a value is a number.

56 OpenOffice.org 3.1 BASIC Guide · April 2009

Checking the Content of Variables

 IsDate(Value)

 checks whether a value is a date.

 IsArray(Value)

 checks whether a value is an array.

These functions are especially useful when querying user input. For example, you
can check whether a user has typed a valid number or date.

If IsNumeric(UserInput) Then
 ValidInput = UserInput
Else
 ValidInput = 0
 MsgBox "Error message."
End If

In the previous example, if the UserInput variable contains a valid numerical value,
then this is assigned to the ValidInput variable. If UserInput does not contain a valid
number, ValidInput is assigned the value 0 and an error message is returned.

While test functions exist for checking numbers, date details and arrays in
OpenOffice.org Basic, a corresponding function for checking Boolean values does
not exist. The functionality can, however, be imitated by using the IsBoolean function:

Function IsBoolean(Value As Variant) As Boolean
 On Error Goto ErrorIsBoolean:
 Dim Dummy As Boolean
 Dummy = Value
 IsBoolean = True
 On Error Goto 0
 Exit Sub

 ErrorIsBoolean:
 IsBoolean = False
 On Error Goto 0
End Function

The IsBoolean function defines an internal Dummy help variable of the Boolean type
and tries to assign this to the transferred value. If assignment is successful, the
function returns True. If it fails, a runtime error is produced, the error handler
intercepts the error, and the function returns False.

Note – If a string in OpenOffice.org Basic contains a non-numerical value and if this
is assigned to a number, OpenOffice.org Basic does not produce an error message,
but stops converting the string at the first invalid character. This procedure differs
from VBA. There, an error is triggered and program implementation terminated if a
corresponding assignment is executed.

Chapter 3 · The Runtime Library of OpenOffice.org Basic 57

Checking the Content of Variables

Strings

Working with Sets of Characters

When administering strings, OpenOffice.org Basic uses the set of Unicode
characters. The Asc and Chr functions allow the Unicode value belonging to a
character to be established and/or the corresponding character to be found for a
Unicode value. The following expressions assign the various Unicode values to the
code variable:

Code = Asc("A") ' Latin letter A (Unicode-value 65)
Code = Asc("€") ' Euro character (Unicode-value 8364)
Code = Asc("Л") ' Cyrillic letter Л (Unicode-value 1083)

Conversely, the expression

MyString = Chr(13)

ensures that the MyString string is initialized with the value of the number 13, which
stands for a hard line break.

The Chr command is often used in Basic languages to insert control characters in a
string. The assignment

MyString = Chr(9) + "This is a test" + Chr(13)

therefore ensures that the text is preceded by a tab character (Unicode-value 9) and
that a hard line break (Unicode-value 13) is added after the text.

Accessing Parts of a String

OpenOffice.org Basic provides three functions that return partial strings, plus a length
function:

 Left(MyString, Length)

 returns the first Length characters of MyString.

 Right(MyString, Length)

 returns the last Length characters of MyString.

58 OpenOffice.org 3.1 BASIC Guide · April 2009

Accessing Parts of a String

 Mid(MyString, Start, Length)

 returns first Length characters of MyString as of the Start position.

 Len(MyString)

 returns the number of characters in MyString.

Here are a few example calls for the named functions:

Dim MyString As String
Dim MyResult As String
Dim MyLen As Integer

MyString = "This is a small test"
MyResult = Left(MyString,5) ' Provides the string "This "
MyResult = Right(MyString, 5) ' Provides the string " test"
MyResult = Mid(MyString, 8, 5) ' Provides the string " a sm"
MyLen = Len(MyString) ' Provides the value 20

Search and Replace

OpenOffice.org Basic provides the InStr function for searching for a partial string
within another string:

ResultString = InStr (MyString, SearchString)

The SearchString parameter specifies the string to be searched for within MyString.
The function returns a number that contains the position at which the SearchString
first appears within MyString. If you want to find other matches for the string, the
function also provides the opportunity to specify an optional start position from which
OpenOffice.org Basic begins the search. In this case, the syntax of the function is:

ResultString = InStr(StartPosition, MyString, SearchString)

In the previous examples, InStr ignores uppercase and lowercase characters. To
change the search so that InStr is case sensitive, add the parameter 0, as shown in
the following example:

ResultString = InStr(MyString, SearchString, 0)

Using the previous functions for editing strings, programmers can search for and
replace one string in another string:

Function Replace(Source As String, Search As String, NewPart As String)
 Dim Result As String
 Dim StartPos As Long
 Dim CurrentPos As Long

 Result = ""
 StartPos = 1

Chapter 3 · The Runtime Library of OpenOffice.org Basic 59

Search and Replace

 CurrentPos = 1

 If Search = "" Then
 Result = Source
 Else
 Do While CurrentPos <> 0
 CurrentPos = InStr(StartPos, Source, Search)
 If CurrentPos <> 0 Then
 Result = Result + Mid(Source, StartPos, _
 CurrentPos - StartPos)
 Result = Result + NewPart
 StartPos = CurrentPos + Len(Search)
 Else
 Result = Result + Mid(Source, StartPos, Len(Source))
 End If ' Position <> 0
 Loop
 End If

 Replace = Result
End Function

The function searches through the transferred Search string in a loop by means of
InStr in the original term Source. If it finds the search term, it takes the part before
the expression and writes it to the Result return buffer. It adds the NewPart section at
the point of the search term Search. If no more matches are found for the search
term, the function establishes the part of the string still remaining and adds this to the
return buffer. It returns the string produced in this way as the result of the
replacement process.

Since replacing parts of character sequences is one of the most frequently used
functions, the Mid function in OpenOffice.org Basic has been extended so that this
task is performed automatically. The following example replaces three characters with
the string is from the sixth position of the MyString string.

Dim MyString As String

MyString = "This was my text"
Mid(MyString, 6, 3, "is")

Formatting Strings

The Format function formats numbers as a string. To do this, the function expects a
Format expression to be specified, which is then used as the template for formatting
the numbers. Each place holder within the template ensures that this item is
formatted correspondingly in the output value. The five most important place holders
within a template are the zero (0), pound sign (#), period (.), comma (,) and dollar
sign ($) characters.

60 OpenOffice.org 3.1 BASIC Guide · April 2009

Formatting Strings

The 0 character within the template ensures that a number is always placed at the
corresponding point. If a number is not provided, 0 is displayed in its place.

A . stands for the decimal point symbol defined by the operating system in the
country-specific settings.

The example below shows how the 0 and . characters can define the digits after the
decimal point in an expression:

MyFormat = "0.00"
MyString = Format(-1579.8, MyFormat) ' Provides "-1579,80"
MyString = Format(1579.8, MyFormat) ' Provides "1579,80"
MyString = Format(0.4, MyFormat) ' Provides "0,40"
MyString = Format(0.434, MyFormat) ' Provides "0,43"

In the same way, zeros can be added in front of a number to achieve the desired
length:

MyFormat = "0000.00"
MyString = Format(-1579.8, MyFormat) ' Provides "-1579,80"
MyString = Format(1579.8, MyFormat) ' Provides "1579,80"
MyString = Format(0.4, MyFormat) ' Provides "0000,40"
MyString = Format(0.434, MyFormat) ' Provides "0000,43"

A , represents the character that the operating system uses for a thousands
separator, and the # stands for a digit or place that is only displayed if it is required by
the input string.

MyFormat = "#,##0.00"
MyString = Format(-1579.8, MyFormat) ' Provides "-1.579,80"
MyString = Format(1579.8, MyFormat) ' Provides "1.579,80"
MyString = Format(0.4, MyFormat) ' Provides "0,40"
MyString = Format(0.434, MyFormat) ' Provides "0,43"

In place of the $ place holder, the Format function displays the relevant currency
symbol defined by the system (this example assumes a European locale has been
defined):

MyFormat = "#,##0.00 $"
MyString = Format(-1579.8, MyFormat) ' Provides "-1.579,80 €"
MyString = Format(1579.8, MyFormat) ' Provides "1.579,80 €"
MyString = Format(0.4, MyFormat) ' Provides "0,40 €"
MyString = Format(0.434, MyFormat) ' Provides "0,43 €"

The format instructions used in VBA for formatting date and time details can also be
used:

sub main
 dim myDate as date
 myDate = "01/06/98"
 TestStr = Format(myDate, "mm-dd-yyyy") ' 01-06-1998
 MsgBox TestStr
end sub

Chapter 3 · The Runtime Library of OpenOffice.org Basic 61

Formatting Strings

Date and Time

OpenOffice.org Basic provides the Date data type, which saves the date and time
details in binary format.

Specification of Date and Time Details
within the Program Code

You can assign a date to a date variable through the assignment of a simple string:

Dim MyDate As Date
MyDate = "24.1.2002"

This assignment can function properly because OpenOffice.org Basic automatically
converts the date value defined as a string into a date variable. This type of
assignment, however, can cause errors, date and time values are defined and
displayed differently in different countries.

Since OpenOffice.org Basic uses the country-specific settings of the operating
system when converting a string into a date value, the expression shown previously
only functions correctly if the country-specific settings match the string expression.

To avoid this problem, the DateSerial function should be used to assign a fixed value
to a date variable:

Dim MyVar As Date
MyDate = DateSerial (2001, 1, 24)

The function parameter must be in the sequence: year, month, day. The function
ensures that the variable is actually assigned the correct value regardless of the
country-specific settings

The TimeSerial function formats time details in the same way that the DateSerial
function formats dates:

Dim MyVar As Date
MyDate = TimeSerial(11, 23, 45)

Their parameters should be specified in the sequence: hours, minutes, seconds.

62 OpenOffice.org 3.1 BASIC Guide · April 2009

Extracting Date and Time Details

Extracting Date and Time Details

The following functions form the counterpart to the DateSerial and TimeSerial
functions:

 Day(MyDate)

 returns the day of the month from MyDate.

 Month(MyDate)

 returns the month from MyDate.

 Year(MyDate)

 returns the year from MyDate.

 Weekday(MyDate)

 returns the number of the weekday from MyDate.

 Hour(MyTime)

 returns the hours from MyTime.

 Minute(MyTime)

 returns the minutes from MyTime.

 Second(MyTime)

 returns the seconds from MyTime.

These functions extract the date or time sections from a specified Date variable. The
following example checks whether the date saved in MyDate is in the year 2003.

Dim MyDate As Date
' ... Initialization of MyDate

If Year(MyDate) = 2003 Then
 ' ... Specified date is in the year 2003
End If

In the same way, the following example checks whether MyTime is between 12 and 14
hours.

Dim MyTime As Date
' ... Initialization of MyTime

If Hour(MyTime) >= 12 And Hour(MyTime) < 14 Then
 ' ... Specified time is between 12 and 14 hours
End If

The Weekday function returns the number of the weekday for the transferred date:

Dim MyDate As Date

Chapter 3 · The Runtime Library of OpenOffice.org Basic 63

Extracting Date and Time Details

Dim MyWeekday As String
' ... initialize MyDate

Select Case WeekDay(MyDate)
 case 1
 MyWeekday = "Sunday"
 case 2
 MyWeekday = "Monday"
 case 3
 MyWeekday = "Tuesday"
 case 4
 MyWeekday = "Wednesday"
 case 5
 MyWeekday = "Thursday"
 case 6
 MyWeekday = "Friday"
 case 7
 MyWeekday = "Saturday"
End Select

Note – Sunday is considered the first day of the week.

Retrieving System Date and Time

The following functions are available in OpenOffice.org Basic to retrieve the system
time and system date:

 Date

returns the present date as a string. The format depends on localization
settings.

 Time

returns the present time as a string.

 Now

returns the present point in time (date and time) as a combined value of type
Date.

Files and Directories

Working with files is one of the basic tasks of an application. The OpenOffice.org API
provides you with a whole range of objects with which you can create, open and

64 OpenOffice.org 3.1 BASIC Guide · April 2009

Retrieving System Date and Time

modify Office documents. These are presented in detail in the Introduction to the
OpenOffice.org API. Regardless of this, in some instances you will have to directly
access the file system, search through directories or edit text files. The runtime library
from OpenOffice.org Basic provides several fundamental functions for these tasks.

Note – Some DOS-specific file and directory functions are no longer provided in
OpenOffice.org, or their function is only limited. For example, support for the ChDir,
ChDrive and CurDir functions is not provided. Some DOS-specific properties are no
longer used in functions that expect file properties as parameters (for example, to
differentiate from concealed files and system files). This change became necessary
to ensure the greatest possible level of platform independence for OpenOffice.org.

Administering Files

Compatibility Mode

The CompatibilityMode statement and function provide greater compatibility with
VBA, by changing the operation of certain functions. The effect on any particular
function is described with that function, below.

As a statement, CompatibilityMode(value) takes a Boolean value to set or clear
the mode. As a function, CompatibilityMode() returns the Boolean value of the
mode.

CompatibilityMode(True) 'set mode
CompatibilityMode(False) 'clear mode

Dim bMode as Boolean
bMode = CompatibilityMode()

Searching Through Directories

The Dir function in OpenOffice.org Basic is responsible for searching through
directories for files and sub-directories. When first requested, a string containing the
path of the directories to be searched must be assigned to Dir as its first parameter.
The second parameter of Dir specifies the file or directory to be searched for.
OpenOffice.org Basic returns the name of the first directory entry found. To retrieve
the next entry, the Dir function should be requested without parameters. If the Dir
function finds no more entries, it returns an empty string.

Chapter 3 · The Runtime Library of OpenOffice.org Basic 65

http://wiki.services.openoffice.org/wiki/Documentation/BASIC_Guide/API_Intro
http://wiki.services.openoffice.org/wiki/Documentation/BASIC_Guide/API_Intro

Administering Files

The following example shows how the Dir function can be used to request all files
located in one directory. The procedure saves the individual file names in the
AllFiles variable and then displays this in a message box.

Sub ShowFiles
 Dim NextFile As String
 Dim AllFiles As String

 AllFiles = ""
 NextFile = Dir("C:\", 0)

 While NextFile <> ""
 AllFiles = AllFiles & Chr(13) & NextFile
 NextFile = Dir
 Wend

 MsgBox AllFiles
End Sub

The 0 (zero) used as the second parameter in the Dir function ensures that Dir only
returns the names of files and directories are ignored. The following parameters can
be specified here:

 0 : returns normal files
 16 : sub-directories

The following example is virtually the same as the preceding example, but the Dir
function transfers the value 16 as a parameter, which returns the sub-directories of a
folder rather than the file names.

Sub ShowDirs
 Dim NextDir As String
 Dim AllDirs As String

 AllDirs = ""
 NextDir = Dir("C:\", 16)

 While NextDir <> ""
 AllDirs = AllDirs & Chr(13) & NextDir
 NextDir = Dir
 Wend

 MsgBox AllDirs
End Sub

Note – When requested in OpenOffice.org Basic, the Dir function, using the
parameter 16, only returns the sub-directories of a folder. In VBA, the function also
returns the names of the standard files so that further checking is needed to retrieve
the directories only. When using the CompatibilityMode (true) function,
OpenOffice.org Basic behaves like VBA and the Dir function, using parameter 16,
returns sub-directories and standard files.

66 OpenOffice.org 3.1 BASIC Guide · April 2009

Administering Files

Note – The options provided in VBA for searching through directories specifically for
files with the concealed, system file, archived, and volume name properties does
not exist in OpenOffice.org Basic because the corresponding file system functions
are not available on all operating systems.

Note – The path specifications listed in Dir may use the * and ? place holders in
both VBA and OpenOffice.org Basic. In OpenOffice.org Basic, the * place holder may
however only be the last character of a file name and/or file extension, which is not
the case in VBA.

Creating and Deleting Directories

OpenOffice.org Basic provides the MkDir function for creating directories.

MkDir ("C:\SubDir1")

This function creates directories and sub-directories. All directories needed within a
hierarchy are also created, if required. For example, if only the C:\SubDir1 directory
exists, then a call

MkDir ("C:\SubDir1\SubDir2\SubDir3\")

creates both the C:\SubDir1\SubDir2 directory and the C:\SubDir1\SubDir2\SubDir3
directory.

The RmDir function deletes directories.

RmDir ("C:\SubDir1\SubDir2\SubDir3\")

If the directory contains sub-directories or files, these are also deleted. You should
therefore be careful when using RmDir.

Note – In VBA, the MkDir and RmDir functions only relate to the current directory. In
OpenOffice.org Basic on the other hand, MkDir and RmDir can be used to create or
delete levels of directories.

Note – In VBA, RmDir produces an error message if a directory contains a file. In
OpenOffice.org Basic, the directory and all its files are deleted. If you use the
CompatibilityMode (true) function, OpenOffice.org Basic will behave like VBA.

Chapter 3 · The Runtime Library of OpenOffice.org Basic 67

Administering Files

Copying, Renaming, Deleting and Checking the
Existence of Files

The following call creates a copy of the Source file under the name of Destination:

FileCopy(Source, Destination)

With the help of the following function you can rename the OldName file with NewName.
The As keyword syntax, and the fact that a comma is not used, goes back to the roots
of the Basic language.

Name OldName As NewName

The following call deletes the Filename file. If you want to delete directory (including
its files) use the RmDir function.

Kill(Filename)

The FileExists function can be used to check whether a file exists:

If FileExists(Filename) Then
 MsgBox "file exists."
End If

Reading and Changing File Properties

When working with files, it is sometimes important to be able to establish the file
properties, the time the file was last changed and the length of the file.

The following call returns some properties about a file.

Dim Attr As Integer
Attr = GetAttr(Filename)

The return value is provided as a bit mask in which the following values are possible:

 1 : read-only file
 16 : name of a directory

The following example determines the bit mask of the test.txt file and checks
whether this is read-only whether it is a directory. If neither of these apply,
FileDescription is assigned the "normal" string.

Dim FileMask As Integer
Dim FileDescription As String

FileMask = GetAttr("test.txt")

If (FileMask AND 1) > 0 Then
 FileDescription = FileDescription & " read-only "
End IF

68 OpenOffice.org 3.1 BASIC Guide · April 2009

Administering Files

If (FileMask AND 16) > 0 Then
 FileDescription = FileDescription & " directory "
End IF

If FileDescription = "" Then
 FileDescription = " normal "
End IF

MsgBox FileDescription

Note – The flags used in VBA for querying the concealed, system file,archived
and volume name file properties are not supported in OpenOffice.org Basic because
these are Windows-specific and are not or are only partially available on other
operating systems.

The SetAttr function permits the properties of a file to be changed. The following call
can therefore be used to provide a file with read-only status:

SetAttr("test.txt", 1)

An existing read-only status can be deleted with the following call:

SetAttr("test.txt", 0)

The date and time of the last amendment to a file are provided by the FileDateTime
function. The date is formatted here in accordance with the country-specific settings
used on the system.

FileDateTime("test.txt") ' Provides date and time of the last file
amendment.

The FileLen function determines the length of a file in bytes (as long integer value).

FileLen("test.txt") ' Provides the length of the file in bytes

Writing and Reading Text Files

OpenOffice.org Basic provides a whole range of methods for reading and writing files.
The following explanations relate to working with text files (not text documents).

Writing Text Files

Before a text file is accessed, it must first be opened. To do this, a free file handle is
needed, which clearly identifies the file for subsequent file access.

Chapter 3 · The Runtime Library of OpenOffice.org Basic 69

Writing and Reading Text Files

The FreeFile function is used to create a free file handle:

FileNo = FreeFile

FileNo is an integer variable that receives the file handle. The handle is then used as
a parameter for the Open instruction, which opens the file.

To open a file so that it can be written as a text file, the Open call is:

Open Filename For Output As #FileNo

Filename is a string containing the name of the file. FileNo is the handle created by
the FreeFile function.

Once the file is opened, the Print instruction can create the file contents, line by line:

Print #FileNo, "This is a test line."

FileNo also stands for the file handle here. The second parameter specifies the text
that is to be saved as a line of the text file.

Once the writing process has been completed, the file must be closed using a Close
call:

Close #FileNo

Again here, the file handle should be specified.

The following example shows how a text file is opened, written, and closed:

Dim FileNo As Integer
Dim CurrentLine As String
Dim Filename As String

Filename = "c:\data.txt" ' Define file name
FileNo = FreeFile ' Establish free file handle

Open Filename For Output As #FileNo ' Open file (writing mode)
Print #FileNo, "This is a line of text" ' Save line
Print #FileNo, "This is another line of text" ' Save line
Close #FileNo ' Close file

Reading Text Files

Text files are read in the same way that they are written. The Open instruction used to
open the file contains the For Input expression in place of the For Output
expression and, rather than the Print command for writing data, the Line Input
instruction should be used to read the data.

Finally, when calling up a text file, the eof instruction is used to check whether the

70 OpenOffice.org 3.1 BASIC Guide · April 2009

Writing and Reading Text Files

end of the file has been reached:

eof(FileNo)

The following example shows how a text file can be read:

Dim FileNo As Integer
Dim CurrentLine As String
Dim File As String
Dim Msg as String

' Define filename
Filename = "c:\data.txt"

' Establish free file handle
FileNo = Freefile

' Open file (reading mode)
Open Filename For Input As FileNo

' Check whether file end has been reached
Do While not eof(FileNo)
 ' Read line
 Line Input #FileNo, CurrentLine
 If CurrentLine <>"" then
 Msg = Msg & CurrentLine & Chr(13)
 end if
Loop

' Close file

Close #FileNo
Msgbox Msg

The individual lines are retrieved in a Do While loop, saved in the Msg variable, and
displayed at the end in a message box.

Message and Input Boxes

OpenOffice.org Basic provides the MsgBox and InputBox functions for basic user
communication.

Displaying Messages

MsgBox displays a basic information box, which can have one or more buttons. In its

Chapter 3 · The Runtime Library of OpenOffice.org Basic 71

Displaying Messages

simplest variant the MsgBox only contains text and an OK button:

MsgBox "This is a piece of information!"

The appearance of the information box can be changed using a parameter. The
parameter provides the option of adding additional buttons, defining the pre-assigned
button, and adding an information symbol.

Note – By convention, the symbolic names given below are written in UPPERCASE,
to mark them as predefined, rather than user-defined. However, the names are not
case-sensitive.

The values for selecting the buttons are:

 0, MB_OK - OK button
 1, MB_OKCANCEL - OK and Cancel button
 2, MB_ABORTRETRYIGNORE - Abort, Retry, and Ignore buttons
 3, MB_YESNOCANCEL - Yes, No, and Cancel buttons
 4, MB_YESNO - Yes and No buttons
 5, MB_RETRYCANCEL - Retry and Cancel buttons

To set a button as the default button, add one of the following values to the parameter
value from the list of button selections. For example, to create Yes, No and Cancel
buttons (value 3) where Cancel is the default (value 512), the parameter value is 3 +
512 = 515. The expression MB_YESNOCANCEL + MB_DEFBUTTON3 is harder to write, but
easier to understand.

 0, MB_DEFBUTTON1 - First button is default value
 256, MB_DEFBUTTON2 - Second button is default value
 512, MB_DEFBUTTON3 - Third button is default value

Finally, the following information symbols are available and can also be displayed by
adding the relevant parameter values:

 16, MB_ICONSTOP - Stop sign
 32, MB_ICONQUESTION - Question mark
 48, MB_ICONEXCLAMATION - Exclamation point
 64, MB_ICONINFORMATION - Tip icon

The following call displays an information box with the Yes and No buttons (value 4),
of which the second button (No) is set as the default value (value 256) and which also
receives a question mark (value 32), 4+256+32=292.

MsgBox "Do you want to continue?", 292
' or,
MsgBox "Do you want to continue?", MB_YESNO + MB_DEFBUTTON2 + MB_ICONQUESTION

If an information box contains several buttons, then a return value should be queried

72 OpenOffice.org 3.1 BASIC Guide · April 2009

Displaying Messages

to determine which button has been pressed. The following return values are
available in this instance:

 1, IDOK - Ok
 2, IDCANCEL - Cancel
 3, IDABORT - Abort
 4, IDRETRY - Retry
 5 - Ignore
 6, IDYES - Yes
 7, IDNO - No

In the previous example, checking the return values could be as follows:

Dim iBox as Integer
iBox = MB_YESNO + MB_DEFBUTTON2 + MB_ICONQUESTION
If MsgBox ("Do you want to continue?", iBox) = IDYES Then
' or,
If MsgBox ("Do you want to continue?", 292) = 6 Then
 ' Yes button pressed
Else
 ' No button pressed
End IF

In addition to the information text and the parameter for arranging the information
box, MsgBox also permits a third parameter, which defines the text for the box title:

MsgBox "Do you want to continue?", 292, "Box Title"

If no box title is specified, the default is “soffice”.

Input Box For Querying Simple Strings

The InputBox function queries simple strings from the user. It is therefore a simple
alternative to configuring dialogs. InputBox receives three standard parameters:

 An information text.
 A box title.
 A default value which can be added within the input area.
InputVal = InputBox("Please enter value:", "Test", "default value")

As a return value, the InputBox provides the string typed by the user.

Chapter 3 · The Runtime Library of OpenOffice.org Basic 73

Input Box For Querying Simple Strings

Other Functions

Beep

The Beep function causes the system to play a sound that can be used to warn the
user of an incorrect action. Beep does not have any parameters:

Beep ' creates an informative tone

Shell

External programs can be started using the Shell function.

Shell(Pathname, Windowstyle, Param)

Pathname defines the path of the program to be executed.

Windowstyle defines the window in which the program is started.

The following values are possible:

 0 - The program receives the focus and is started in a concealed window.
 1 - The program receives the focus and is started in a normal-sized window.
 2 - The program receives the focus and is started in a minimized window.
 3 - The program receives the focus and is started in a maximized window.
 4 - The program is started in a normal-sized window, without receiving the focus.
 6 - The program is started in a minimized window, the focus remains in the current

window.
 10 - The program is started in full screen mode.

The third parameter, Param, permits command line parameters to be transferred to
the program to be started.

74 OpenOffice.org 3.1 BASIC Guide · April 2009

Wait and WaitUntil

Wait and WaitUntil

The Wait statement suspends program execution for a specified time. The waiting
period is specified in milliseconds. The command:

Wait 2000

specifies a delay of 2 seconds (2000 milliseconds).

The WaitUntil statement provides a greater degree of compatibility with VBA
parameter usage. WaitUntil takes a parameter of type Date, with a combined date
and time value. The command:

WaitUntil Now + TimeValue("00:00:02")

specifies the same delay, 2 seconds, as the previous example.

Environ

The Environ function returns the environmental variables of the operating system.
Depending on the system and configuration, various types of data are saved here.
The following call determines the environment variables of temporary directory of the
operating system:

Dim TempDir
TempDir=Environ ("TEMP")

Chapter 3 · The Runtime Library of OpenOffice.org Basic 75

4   C H A P T E R 4

4 Introduction to the API

OpenOffice.org objects and methods, such as paragraphs, spreadsheets, and fonts,
are accessible to OpenOffice.org Basic through the OpenOffice.org application
programming interface, or API. Through the API, for example, documents can be
created, opened, modified and printed. The API can be used not only by
OpenOffice.org Basic, but also by other programming languages, such as Java and
C++. The interface between the API and various programming languages is provided
by something called Universal Network Objects (UNO).

This chapter provides a background on the API. Building on this background, the
following chapters will show how the API can be used to make OpenOffice.org do
what you want it to do.

Universal Network Objects (UNO)

OpenOffice.org provides a programming interface in the form of the Universal
Network Objects (UNO). This is an object-oriented programming interface which
OpenOffice.org sub-divides into various objects which for their part ensure program-
controlled access to the Office package.

Since OpenOffice.org Basic is a procedural programming language, several linguistic
constructs have had to be added to it which enable the use of UNO.

77

Introduction to the API

To use a Universal Network Object in OpenOffice.org Basic, you will need a variable
declaration for the associated object. The declaration is made using the Dim
instruction (see The Language of OpenOffice.org Basic). The Object type designation
should be used to declare an object variable:

Dim Obj As Object

The call declares an object variable named Obj.

The object variable created must then be initialized so that it can be used. This can
be done using the createUnoService function:

Obj = createUnoService("com.sun.star.frame.Desktop")

This call assigns to the Obj variable a reference to the newly created object.
com.sun.star.frame.Desktop resembles an object type; however in UNO terminology
it is called a service rather than a type. In accordance with UNO philosophy, an Obj is
described as a reference to an object which supports the com.sun.star.frame.Desktop
service. The service term used in OpenOffice.org Basic therefore corresponds to the
type and class terms used in other programming languages.

There is, however, one main difference: a Universal Network Object may support
several services at the same time. Some UNO services in turn support other services
so that, through one object, you are provided with a whole range of services. For
example, that the aforementioned object, which is based on the
com.sun.star.frame.Desktop service, can also include other services for loading
documents and for ending the program.

Note – Whereas the structure of an object in VBA is defined by the class to which it
belongs, in OpenOffice.org Basic the structure is defined through the services which
it supports. A VBA object is always assigned to precisely one single class. A
OpenOffice.org Basic object can, however, support several services.

Properties and Methods

An object in OpenOffice.org Basic provides a range of properties and methods which
can be called by means of the object.

78 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://wiki.services.openoffice.org/wiki/Documentation/BASIC_Guide/Language

Properties

Properties

Properties are like the properties of an object; for example, Filename and Title for a
Document object.

The properties are set by means of a simple assignment:

Document.Title = "{{OOo}} Basic Programmer's Guide"
Document.Filename = "basguide.odt"

A property, just like a normal variable, has a type that defines which values it can
record. The preceding Filename and Title properties are of the string type.

Real Properties and Imitated Properties

Most of the properties of an object in OpenOffice.org Basic are defined as such in the
UNO description of the service. In addition to these "real" properties, there are also
properties in OpenOffice.org Basic which consist of two methods at the UNO level.
One of these is used to query the value of the property and the other is issued to set
it (get and set methods). The property has been virtually imitated from two methods.
Character objects in UNO, for example, provide the getPosition and setPosition
methods through which the associated key point can be called up and changed. The
OpenOffice.org Basic programmer can access the values through the Position
property. Regardless of this, the original methods are also available (in our example,
getPosition and setPosition).

Methods

Methods can be understood as functions that relate directly to an object and through
which this object is called. The preceding Document object could, for example, provide
a Save method, which can be called as follows:

Document.Save()

Methods, just like functions, may contain parameters and return values. The syntax of
such method calls is oriented towards classic functions. The following call also
specifies the True parameter for the document object when requesting the Save
method.

Ok = Document.Save(True)

Chapter 4 · Introduction to the API 79

Methods

Once the method has been completed, Save saves a return value in the Ok variable.

Modules, Services and Interfaces

OpenOffice.org provides hundreds of services. To provide an overview of these
services, they have been combined into modules. The modules are of no other
functional importance for OpenOffice.org Basic programmers. When specifying a
service name, it is only the module name which is of any importance because this
must be also listed in the name. The complete name of a service consists of the
com.sun.star expression, which specifies that it is a OpenOffice.org service, followed
by the module name, such as frame, and finally the actual service name, such as
Desktop. The complete name in the named example would be:

com.sun.star.frame.Desktop

In addition to the module and service terms, UNO introduces the term 'interface'.
While this term may be familiar to Java programmers, it is not used in Basic.

An interface combines several methods. In the strictest sense of the word, a service
in UNO does not support methods, but rather interfaces, which in turn provide
different methods. In other words, the methods are assigned (as combinations) to the
service in interfaces. This detail may be of interest in particular to Java- or C++
programmers, since in these languages, the interface is needed to request a method.
In OpenOffice.org Basic, this is irrelevant. Here, the methods are called directly by
means of the relevant object.

For an understanding of the API, it is, however, useful to have the assignment of
methods to various interfaces handy, since many interfaces are used in the different
services. If you are familiar with an interface, then you can transfer your knowledge
from one service to another.

Some central interfaces are used so frequently, triggered by different services, that
they are shown again at the end of this chapter.

Tools for Working with UNO

The question remains as to which objects — or services if we are going to remain
with UNO terminology — support which properties, methods and interfaces and how
these can be determined. In addition to this guide, you can get more information

80 OpenOffice.org 3.1 BASIC Guide · April 2009

Methods

about objects from the following sources: the supportsService method, the debug
methods as well as the Developer's Guide, and the API reference.

The supportsService Method

A number of UNO objects support the supportsService method, with which you can
establish whether an object supports a particular service. The following call, for
example, determines whether the TextElement object supports the
com.sun.star.text.Paragraph service.

Ok = TextElement.supportsService("com.sun.star.text.Paragraph")

Debug Properties

Every UNO object in OpenOffice.org Basic knows what properties, methods and
interfaces it already contains. It provides properties that return these in the form of a
list. The corresponding properties are:

 DBG_properties

 returns a string containing all properties of an object

 DBG_methods

 returns a string containing all methods of an object

 DBG_supportedInterfaces

 returns a string containing all interfaces which support an object.

The following program code shows how DBG_properties and DBG_methods can be
used in real-life applications. It first creates the com.sun.star.frame.Desktop service
and then displays the supported properties and methods in message boxes.

Dim Obj As Object
Obj = createUnoService("com.sun.star.frame.Desktop")

MsgBox Obj.DBG_Properties
MsgBox Obj.DBG_methods

When using DBG_properties, note that the function returns all properties that one
particular service can theoretically support. No assurances are, however, provided for
whether these can also be used by the object in question. Before calling up
properties, you must therefore use the IsEmpty function to check whether this is

Chapter 4 · Introduction to the API 81

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html

Debug Properties

actually available.

API Reference

More information about the available services, and their interfaces, methods and
properties can be found in the reference for the OpenOffice.org API.

Overview of Central Interfaces

Some interfaces of OpenOffice.org can be found in many parts of the OpenOffice.org
API. They define sets of methods for abstract tasks which can be applied to various
problems. Here, you will find an overview of the most common of these interfaces.

The origin of the objects is explained at a later point in this guide. At this point, only
some of the abstract aspects of objects, for which the OpenOffice.org API provides
some central interfaces, are discussed.

Creating Context-Dependent Objects

The OpenOffice.org API provides two options for creating objects. One can be found
in the createUnoService function mentioned at the start of this chapter.
createUnoService creates an object which can be used universally. Such objects and
services are also known as context-independent services.

In addition to context-independent services, there are also context-dependent
services whose objects are only useful when used in conjunction with another object.
A drawing object for a spreadsheet document, for example, can therefore only exist in
conjunction with this one document.

com.sun.star.lang.XMultiServiceFactory Interface

Context-dependent objects are usually created by means of an object method, on

82 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/module-ix.html

Creating Context-Dependent Objects

which the object depends. The createInstance method, which is defined in the
XMultiServiceFactory interface, is used in particular in the document objects.

The drawing object can, for example, be created as follows using a spreadsheet
object:

Dim RectangleShape As Object
RectangleShape = _
 Spreadsheet.createInstance("com.sun.star.drawing.RectangleShape")

A paragraph template in a text document is created in the same way:

Dim Style as Object
Style = Textdocument.createInstance("com.sun.star.style.ParagraphStyle")

Named Access to Subordinate Objects

The XNameAccess and XNameContainer interfaces are used in objects that contain
subordinate objects, which can be addressed using a natural language name.

While XNamedAccess permits access to the individual objects, XNameContainer takes
on the insertion, modification and deletion of elements.

com.sun.star.container.XNameAccess Interface

An example of the use of XNameAccess is provided by the sheets object of a
spreadsheet. It combines all the pages within the spreadsheet. The individual pages
are accessed from the sheets object, by using the getByName method from
XNameAccess:

Dim Sheets As Object
Dim Sheet As Object

Sheets = Spreadsheet.Sheets
Sheet = Sheets.getByName("Sheet1")

The getElementNames method provides an overview of the names of all elements. As
a result, it returns a data field containing the names. The following example shows
how all element names of a spreadsheet can thereby be determined and displayed in
a loop:

Dim Sheets As Object
Dim SheetNames
Dim I As Integer

Sheets = Spreadsheet.Sheets

Chapter 4 · Introduction to the API 83

Named Access to Subordinate Objects

SheetNames = Sheets.getElementNames

For I=LBound(SheetNames) To UBound(SheetNames)
 MsgBox SheetNames(I)
Next I

The hasByName method of the XNameAccess interface reveals whether a subordinate
object with a particular name exists within the basic object. The following example
therefore displays a message that informs the user whether the Spreadsheet object
contains a page of the name Sheet1.

Dim Sheets As Object

Sheets = Spreadsheet.Sheets
If Sheets.HasByName("Sheet1") Then
 MsgBox " Sheet1 available"
Else
 MsgBox "Sheet1 not available"
End If

com.sun.star.container.XNameContainer Interface

The XNameContainer interface takes on the insertion, deletion and modification of
subordinate elements in a basic object. The functions responsible are insertByName,
removeByName and replaceByName.

The following is a practical example of this. It calls a text document, which contains a
StyleFamilies object and uses this to in turn make the paragraph templates
(ParagraphStyles) of the document available.

Dim StyleFamilies As Object
Dim ParagraphStyles As Object
Dim NewStyle As Object

StyleFamilies = Textdoc.StyleFamilies
ParagraphStyles = StyleFamilies.getByName("ParagraphStyles")
ParagraphStyles.insertByName("NewStyle", NewStyle)
ParagraphStyles.replaceByName("ChangingStyle", NewStyle)
ParagraphStyles.removeByName("OldStyle")

The insertByName line inserts the NewStyle style under the name of the same name
in the ParagraphStyles object. The replaceByName line changes the object behind
ChangingStyle into NewStyle. Finally, the removeByName call removes the object
behind OldStyle from ParagraphStyles.

84 OpenOffice.org 3.1 BASIC Guide · April 2009

Index-Based Access to Subordinate Objects

Index-Based Access to Subordinate
Objects

The XIndexAccess and XIndexContainer interfaces are used in objects which contain
subordinate objects and which can be addressed using an index.

XIndexAccess provides the methods for accessing individual objects.
XIndexContainer provides methods for inserting and removing elements.

com.sun.star.container.XIndexAccess Interface

XIndexAccess provides the getByIndex and getCount methods for calling the
subordinate objects. getByIndex provides an object with a particular index. getCount
returns how many objects are available.

Dim Sheets As Object
Dim Sheet As Object
Dim I As Integer

Sheets = Spreadsheet.Sheets

For I = 0 to Sheets.getCount() - 1
 Sheet = Sheets.getByIndex(I)
 ' Editing sheet
Next I

The example shows a loop that runs through all sheet elements one after another
and saves a reference to each in the Sheet object variable. When working with the
indexes, note that getCount returns the number of elements. The elements in
getByIndex however are numbered beginning with 0. The counting variable of the
loop therefore runs from 0 to getCount()-1.

com.sun.star.container.XIndexContainer Interface

The XIndexContainer interface provides the insertByIndex and removeByIndex
functions. The parameters are structured in the same way as the corresponding
functions in XNameContainer.

Chapter 4 · Introduction to the API 85

Iterative Access to Subordinate Objects

Iterative Access to Subordinate
Objects

In some instances, an object may contain a list of subordinate objects that cannot be
addressed by either a name or an index. In these situations, the XEnumeration and
XenumerationAccess interfaces are appropriate. They provide a mechanism through
which all subordinate elements of an objects can be passed, step by step, without
having to use direct addressing.

com.sun.star.container.XEnumeration and
XenumerationAccess Interfaces

The basic object must provide the XEnumerationAccess interface, which contains only
a createEnumeration method. This returns an auxiliary object, which in turn provides
the XEnumeration interface with the hasMoreElements and nextElement methods.
Through these, you then have access to the subordinate objects.

The following example steps through all the paragraphs of a text:

Dim ParagraphEnumeration As Object
Dim Paragraph As Object

ParagraphEnumeration = Textdoc.Text.createEnumeration

While ParagraphEnumeration.hasMoreElements()
 Paragraph = ParagraphEnumeration.nextElement()
Wend

The example first creates a ParagraphEnumeration auxiliary object. This gradually
returns the individual paragraphs of the text in a loop. The loop is terminated as soon
as the hasMoreElements method returns the False value, signaling that the end of the
text has been reached.

86 OpenOffice.org 3.1 BASIC Guide · April 2009

5   C H A P T E R 5

5 Working with OpenOffice.org
Documents

The OpenOffice.org API has been structured so that as many of its parts as possible
can be used universally for different tasks. This includes the interfaces and services
for creating, opening, saving, converting, and printing documents and for template
administration. Since these function areas are available in all types of documents,
they are explained first in this chapter.

 The StarDesktop
 Templates

The StarDesktop

When working with documents, two services are used most frequently:

 The com.sun.star.frame.Desktop service, which is similar to the core service of
OpenOffice.org. It provides the functions for the frame object of OpenOffice.org,
under which all document windows are classified. Documents can also be
created, opened and imported using this service.

 The basic functionality for the individual document objects is provided by the
com.sun.star.document.OfficeDocument service. This provides the methods for
saving, exporting and printing documents.

87

http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

Working with OpenOffice.org Documents

The com.sun.star.frame.Desktop service is created automatically when
OpenOffice.org is started. This service can be addressed in OpenOffice.org Basic
using the global name StarDesktop.

The most important interface of the StarDesktop is
com.sun.star.frame.XComponentLoader. This basically covers the
loadComponentFromURL method, which is responsible for creating, importing, and
opening documents.

The name of the StarDesktop object dates back to StarOffice 5, in which all
document windows were embedded in one common application called StarDesktop.
In the present version of OpenOffice.org, a visible StarDesktop is no longer used.
The name StarDesktop was, however, retained for the frame object of
OpenOffice.org because it clearly indicates that this is a basic object for the entire
application.

The StarDesktop object replaces the Application object of StarOffice 5 which
previously applied as a root object. However, unlike the old Application object,
StarDesktop is primarily responsible for opening new documents. The functions
resident in the old Application object for controlling the on-screen depiction of
OpenOffice.org (for example, FullScreen, FunctionBarVisible, Height, Width, Top,
Visible) are no longer used.

Note – Whereas the active document in Word is accessed through
Application.ActiveDocument and in Excel through Application.ActiveWorkbook, in
OpenOffice.org, the StarDesktop is responsible for this task. The active document
object is accessed in OpenOffice.org through the StarDesktop.CurrentComponent
property, or through ThisComponent.

ThisComponent

The global name ThisComponent generally returns the same object as
StarDesktop.CurrentComponent, with one significant advantage. If you are running
from within the Basic IDE, debugging or exploring, then StarDesktop returns the
Basic IDE itself. This is probably not what you want. ThisComponent returns the last
previously active document.

88 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XComponentLoader.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/Desktop.html

Basic Information about Documents in OpenOffice.org

Basic Information about Documents in
OpenOffice.org

When working with OpenOffice.org documents, it is useful to deal with some of the
basic issues of document administration in OpenOffice.org. This includes the way in
which file names are structured for OpenOffice.org documents, as well as the format
in which files are saved.

File Names in URL Notation

Since OpenOffice.org is a platform-independent application, it uses URL notation
(which is independent of any operating system), as defined in the Internet Standard
RFC 1738 for file names. Standard file names using this system begin with the prefix
file:/// followed by the local path. If the file name contains sub-directories, then
these are separated by a single forward slash, not with a backslash usually used
under Windows. The following path references the test.odt file in the doc directory
on the C: drive.

file:///C:/doc/test.odt

To convert local file names into an URL, OpenOffice.org provides the ConvertToUrl
function. To convert a URL into a local file name, OpenOffice.org provides the
ConvertFromUrl function:

MsgBox ConvertToUrl("C:\doc\test.odt")
 ' supplies file:///C:/doc/test.odt
MsgBox ConvertFromUrl("file:///C:/doc/test.odt")
 ' supplies (under Windows) c:\doc\test.odt

The example converts a local file name into a URL and displays it in a message box.
It then converts a URL into a local file name and also displays this.

The Internet Standard RFC 1738, upon which this is based, permits use of the 0-9,
a-z, and A-Z characters. All other characters are inserted as escape coding in the
URLs. To do this, they are converted into their hexadecimal value in the ISO 8859-1
(ISO-Latin) set of characters and are preceded by a percent sign. A space in a local
file name therefore, for example, becomes a %20 in the URL.

XML File Format

OpenOffice.org documents are based on the XML file format. XML-based files can be
opened and edited with other programs.

Chapter 5 · Working with OpenOffice.org Documents 89

http://tools.ietf.org/html/rfc1738
http://tools.ietf.org/html/rfc1738

Basic Information about Documents in OpenOffice.org

Compression of Files

Since XML is based on standard text files, the resultant files are usually very large.
OpenOffice.org therefore compresses the files and saves them as a ZIP file. By
means of a storeAsURL method option, the user can save the original XML files
directly. See storeAsURL Method Options, below.

Creating, Opening and Importing
Documents

Documents are opened, imported and created using the method

StarDesktop.loadComponentFromURL(URL, Frame, SearchFlags, FileProperties)

The first parameter of loadComponentFromURL specifies the URL of the associated file.

As the second parameter, loadComponentFromURL expects a name for the frame
object of the window that OpenOffice.org creates internally for its administration. The
predefined _blank name is usually specified here, and this ensures that
OpenOffice.org creates a new window. Alternatively, _hidden can also be specified,
and this ensures that the corresponding document is loaded but remains invisible.

Using these parameters, the user can open a OpenOffice.org document, since place
holders (dummy values) can be assigned to the last two parameters:

Dim Doc As Object
Dim Url As String
Dim Dummy() 'An (empty) array of PropertyValues

Url = "file:///C:/test.odt"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, Dummy)

The preceding call opens the text.odt file and displays this in a new window.

Any number of documents can be opened in this way in OpenOffice.org Basic and
then edited using the returned document objects.

Note – StarDesktop.loadComponentFromURL supersedes the Documents.Add and
Documents.Open methods from the old OpenOffice.org API.

90 OpenOffice.org 3.1 BASIC Guide · April 2009

Creating, Opening and Importing Documents

Replacing the Content of the Document Window

The named _blank and _hidden values for the Frame parameter ensure that
OpenOffice.org creates a new window for every call from loadComponentFromURL. In
some situations, it is useful to replace the content of an existing window. In this case,
the frame object of the window should contain an explicit name. Note that this name
must not begin with an underscore. Furthermore, the SearchFlags parameter must be
set so that the corresponding framework is created, if it does not already exist. The
corresponding constant for SearchFlags is:

SearchFlags = com.sun.star.frame.FrameSearchFlag.CREATE + _
 com.sun.star.frame.FrameSearchFlag.ALL

The following example shows how the content of an opened window can be replaced
with the help of the frame parameter and SearchFlags:

Dim Doc As Object
Dim Dummy()
Dim Url As String
Dim SearchFlags As Long

SearchFlags = com.sun.star.frame.FrameSearchFlag.CREATE + _
 com.sun.star.frame.FrameSearchFlag.ALL
Url = "file:///C:/test.odt"
Doc = StarDesktop.loadComponentFromURL(Url, "MyFrame", SearchFlags, Dummy)
MsgBox "Press OK to display the second document."

Url = "file:///C:/test2.odt"
Doc = StarDesktop.loadComponentFromURL(Url, "MyFrame", _
 SearchFlags, Dummy)

The example first opens the test.odt file in a new window with the frame name of
MyFrame. Once the message box has been confirmed, it replaces the content of the
window with the test2.odt file.

loadComponentFromURL Method Options

The fourth parameter of the loadComponentFromURL function is a PropertyValue data
field. which provides OpenOffice.org with various options for opening and creating
documents. The data field must provide a PropertyValue structure for each option in
which the name of the option is saved as a string as well as the associated value.

loadComponentFromURL supports the following options:

 AsTemplate (Boolean)

 if true, loads a new, untitled document from the given URL. If is false, template
files are loaded for editing.

Chapter 5 · Working with OpenOffice.org Documents 91

Creating, Opening and Importing Documents

 CharacterSet (String)

 defines which set of characters a document is based on.

 FilterName (String)

 specifies a special filter for the loadComponentFromURL function. The filter names
available are defined in the
\share\config\registry\instance\org\openoffice\office\TypeDetection.xm

l file.

 FilterOptions (String)

 defines additional options for filters.

 JumpMark (String)

 once a document has been opened, jumps to the position defined in JumpMark.

 Password (String)

 transfers a password for a protected file.

 ReadOnly (Boolean)

 loads a read-only document.

The following example shows how a text file separated by a comma in
OpenOffice.org Calc can be opened using the FilterName option.

Dim Doc As Object
Dim FileProperties(1) As New com.sun.star.beans.PropertyValue
Dim Url As String

Url = "file:///C:/doc.csv"
FileProperties(0).Name = "FilterName"
FileProperties(0).Value ="Text - txt - csv (StarCalc)"
FileProperties(1).Name = "FilterOptions"
FileProperties(1).value = "44,34,0,1"

Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, FileProperties())

The FileProperties data field covers precisely one value because it records one
option. The Filtername property defines whether OpenOffice.org uses a
OpenOffice.org Calc text filter to open files.

Creating New Documents

OpenOffice.org automatically creates a new document if the document specified in
the URL is a template.

Alternatively, if only an empty document without any adaptation is needed, a

92 OpenOffice.org 3.1 BASIC Guide · April 2009

Creating, Opening and Importing Documents

private:factory URL can be specified:

Dim Dummy()
Dim Url As String
Dim Doc As Object

Url = "private:factory/swriter"
Doc = StarDesktop.loadComponentFromURL(Url, "_blank", 0, Dummy())

The call creates an empty OpenOffice.org writer document.

Document Objects

The loadComponentFromURL function introduced in the previous section returns a
document object. This supports the com.sun.star.document.OfficeDocument service,
which in turn provides two central interfaces:

 The com.sun.star.frame.XStorable interface, which is responsible for saving
documents.

 The com.sun.star.view.XPrintable interface, which contains the methods for
printing documents.

Saving and Exporting Documents

OpenOffice.org documents are saved directly through the document object. The
store method of the com.sun.star.frame.XStorable interface is available for this
purpose:

Doc.store()

This call functions provided that the document has already been assigned a memory
space. This is not the case for new documents. In this instance, the storeAsURL
method is used. This method is also defined in com.sun.star.frame.XStorable and can
be used to define the location of the document:

Dim URL As String
Dim Dummy()

Url = "file:///C:/test3.odt"
Doc.storeAsURL(URL, Dummy())

In addition to the preceding methods, com.sun.star.frame.XStorable also provides
some help methods which are useful when saving documents. These are:

Chapter 5 · Working with OpenOffice.org Documents 93

http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/frame/XStorable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/document/OfficeDocument.html

Document Objects

 hasLocation()

 specifies whether the document has already been assigned a URL.

 isReadonly()

 specifies whether a document has read-only protection.

 isModified()

 specifies whether a document has been modified since it was last saved.

The code for saving a document can be extended by these options so that the
document is only saved if the object has actually been modified and the file name is
only queried if it is actually needed:

If (Doc.isModified) Then
 If (Doc.hasLocation And (Not Doc.isReadOnly)) Then
 Doc.store()
 Else
 Doc.storeAsURL(URL, Dummy())
 End If
End If

The example first checks whether the relevant document has been modified since it
was last saved. It only continues with the saving process if this is the case. If the
document has already been assigned a URL and is not a read-only document, it is
saved under the existing URL. If it does not have a URL or was opened in its read-
only status, it is saved under a new URL.

storeAsURL Method Options

As with the loadComponentFromURL method, some options can also be specified in the
form of a PropertyValue data field using the storeAsURL method. These determine
the procedure OpenOffice.org uses when saving a document. storeAsURL provides
the following options:

 CharacterSet (String)

 defines which set of characters a document is based on.

 FilterName (String)

 specifies a special filter for the loadComponentFromURL function. The filter names
available are defined in the
\share\config\registry\instance\org\openoffice\office\TypeDetection.xm

l file.

 FilterOptions (String)

 defines additional options for filters.

94 OpenOffice.org 3.1 BASIC Guide · April 2009

Document Objects

 Overwrite (Boolean)

 allows a file which already exists to be overwritten without a query.

 Password (String)

 transfers the password for a protected file.

 Unpacked (Boolean)

 saves the document (not compressed) in sub-directories.

The following example shows how the Overwrite option can be used in conjunction
with storeAsURL:

Dim Doc As Object
Dim FileProperties(0) As New com.sun.star.beans.PropertyValue
Dim Url As String
' ... Initialize Doc

Url = "file:///c:/test3.odt"
FileProperties(0).Name = "Overwrite"
FileProperties(0).Value = True
Doc.storeAsURL(Url, FileProperties())

The example then saves Doc under the specified file name if a file already exists
under the name.

Printing Documents

Similar to saving, documents are printed out directly by means of the document
object. The Print method of the com.sun.star.view.Xprintable interface is provided for
this purpose. In its simplest form, the print call is:

Dim Dummy()

Doc.print(Dummy())

As in the case of the loadComponentFromURL method, the Dummy parameter is a
PropertyValue data field through which OpenOffice.org can specify several options
for printing.

The options of the print method

The print method expects a PropertyValue data field as a parameter, which reflects
the settings of the print dialog of OpenOffice.org:

Chapter 5 · Working with OpenOffice.org Documents 95

http://api.openoffice.org/docs/common/ref/com/sun/star/view/Xprintable.html

Document Objects

 CopyCount (Integer)

 specifies the number of copies to be printed.

 FileName (String)

 prints the document in the specified file.

 Collate (Boolean)

 advises the printer to collate the pages of the copies.

 Sort (Boolean)

 sorts the pages when printing out several copies (CopyCount > 1).

 Pages (String)

 contains the list of the pages to be printed (syntax as specified in print dialog).

The following example shows how several pages of a document can be printed out
using the Pages option:

Dim Doc As Object
Dim PrintProperties(0) As New com.sun.star.beans.PropertyValue

PrintProperties(0).Name="Pages"
PrintProperties(0).Value="1-3; 7; 9"
Doc.print(PrintProperties())

Printer selection and settings

The com.sun.star.view.XPrintable interface provides the Printer property, which
selects the printer. This property receives a PropertyValue data field with the
following settings:

 Name (String)

specifies the name of printer.

 PaperOrientation (Enum)

specifies the paper orientation (com.sun.star.view.PaperOrientation.PORTRAIT
value for portrait format, com.sun.star.view.PaperOrientation.LANDSCAPE for
landscape format).

 PaperFormat (Enum)

specifies the paper format (for example, com.sun.star.view.PaperFormat.A4 for
DIN A4 or com.sun.star.view.PaperFormat.Letter for US letters).

 PaperSize (Size)

 specifies the paper size in hundredths of a millimeter.

96 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat/Letter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperFormat/A4.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation/LANDSCAPE.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/PaperOrientation/PORTRAIT.html
http://api.openoffice.org/docs/common/ref/com/sun/star/view/XPrintable.html

Document Objects

The following example shows how a printer can be changed and the paper size set
with the help of the Printer property.

Dim Doc As Object
Dim PrinterProperties(1) As New com.sun.star.beans.PropertyValue
Dim PaperSize As New com.sun.star.awt.Size

PaperSize.Width = 20000 ' corresponds to 20 cm
PaperSize.Height = 20000 ' corresponds to 20 cm
PrinterProperties (0).Name="Name"
PrinterProperties (0).Value="My HP Laserjet"
PrinterProperties (1).Name="PaperSize"
PrinterProperties (1).Value=PaperSize
Doc.Printer = PrinterProperties()

The example defines an object named PaperSize with the com.sun.star.awt.Size
type. This is needed to specify the paper size. Furthermore, it creates a data field for
two PropertyValue entries named PrinterProperties. This data field is then
initialized with the values to be set and assigned the Printer property. From the
standpoint of UNO, the printer is not a real property but an imitated one.

Templates

Templates are named lists containing formatting attributes. They move through all
applications of OpenOffice.org and help to significantly simplify formatting. If the user
changes one of the attributes of a template, then OpenOffice.org automatically
adjusts all document sections depending on the attribute. The user can therefore, for
example, change the font type of all level one headers by means of a central
modification in the document. Depending on the relevant document types,
OpenOffice.org recognizes a whole range of different types of template.

OpenOffice.org Writer supports the following templates:

 Character templates
 Paragraph templates
 Frame templates
 Page templates
 Numbering templates

OpenOffice.org Calc supports the following templates:

 Cell template
 Page templates
 OpenOffice.org Impress supports the following templates:
 Character element templates

Chapter 5 · Working with OpenOffice.org Documents 97

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Size.html

Document Objects

 Presentation templates

In OpenOffice.org terminology, the different types of templates are called
StyleFamilies in accordance with the com.sun.star.style.StyleFamily service on
which they are based. The StyleFamilies are accessed by means of the document
object:

Dim Doc As Object
Dim Sheet As Object
Dim StyleFamilies As Object
Dim CellStyles As Object

Doc = StarDesktop.CurrentComponent
StyleFamilies = Doc.StyleFamilies
CellStyles = StyleFamilies.getByName("CellStyles")

The example uses the StyleFamilies property of a spreadsheet document to
establish a list containing all available cell templates.

The individual templates can be accessed directly by means of an index:

Dim Doc As Object
Dim Sheet As Object
Dim StyleFamilies As Object
Dim CellStyles As Object
Dim CellStyle As Object
Dim I As Integer

Doc = StarDesktop.CurrentComponent
StyleFamilies = Doc.StyleFamilies
CellStyles = StyleFamilies.getByName("CellStyles")

For I = 0 To CellStyles.Count - 1
 CellStyle = CellStyles(I)
 MsgBox CellStyle.Name
Next I

The loop added since the previous example displays the names of all cell templates
one after another in a message box.

Details about various formatting
options

Each type of template provides a whole range of individual formatting properties.
Here is an overview of the most important formatting properties and the points at
which they are explained:

 Character properties, com.sun.star.style.CharacterProperties service

98 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/StyleFamily.html

Details about various formatting options

 Paragraph properties, com.sun.star.text.Paragraph service
 Cell properties, com.sun.star.table.CellProperties service
 Page properties, com.sun.star.style.PageProperties service
 Character element properties, Various services

The format properties are by no means restricted to the applications in which these
are explained, but instead can be used universally. For example, most of the page
properties described in Spreadsheets can therefore be used not only in
OpenOffice.org Calc, but also in OpenOffice.org Writer.

More information about working with templates can be found in the Default values for
character and paragraph properties section in Text Documents.

Chapter 5 · Working with OpenOffice.org Documents 99

http://wiki.services.openoffice.org/w/index.php?oldid=96872
http://wiki.services.openoffice.org/w/index.php?oldid=96876
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html

6   C H A P T E R 6

6 Text Documents

In addition to pure strings, text documents also contain formatting information. These
may appear at any point in the text. The structure is further complicated by tables.
These include not only single-dimensional strings, but also two-dimensional fields.
Most word processing programs now finally provide the option of placing drawing
objects, text frames and other objects within a text. These may be outside the flow of
text and can be positioned anywhere on the page.

This chapter presents the central interfaces and services of text documents.

 The Structure of Text Documents
 Editing Text Documents
 More than Just Text

The first section deals with the anatomy of text documents and concentrates on how
a OpenOffice.org Basic program can be used to take iterative steps through a
OpenOffice.org document. It focuses on paragraphs, paragraph portions and their
formatting.

The second section focuses on efficiently working with text documents. For this
purpose, OpenOffice.org provides several help objects, such as the TextCursor
object, which extend beyond those specified in the first section.

The third section moves beyond work with texts. It concentrates on tables, text
frames, text fields, bookmarks, content directories and more.

Information about how to create, open, save and print documents is described in
Working with Documents, because it can be used not only for text documents, but
also for other types of documents.

101

http://wiki.services.openoffice.org/w/index.php?oldid=96869

Text Documents

The Structure of Text Documents

A text document can essentially contain four types of information:

 The actual text
 Templates for formatting characters, paragraphs, and pages
 Non-text elements such as tables, graphics and drawing objects
 Global settings for the text document

This section concentrates on the text and associated formatting options.

Paragraphs and Paragraph Portions

The core of a text document consists of a sequence of paragraphs. These are neither
named nor indexed and there is therefore no possible way of directly accessing
individual paragraphs. The paragraphs can however be sequentially traversed with
the help of the Enumeration object described in Introduction to the API. This allows
the paragraphs to be edited.

When working with the Enumeration object, one special scenario should, however, be
noted: it not only returns paragraphs, but also tables (strictly speaking, in
OpenOffice.org Writer, a table is a special type of paragraph). Before accessing a
returned object, you should therefore check whether the returned object supports the
com.sun.star.text.Paragraph service for paragraphs or the
com.sun.star.text.TextTable service for tables.

The following example traverses the contents of a text document in a loop and uses a
message in each instance to inform the user whether the object in question is a
paragraph or table.

Dim Doc As Object
Dim Enum As Object
Dim TextElement As Object

' Create document object
Doc = StarDesktop.CurrentComponent
' Create enumeration object
Enum = Doc.Text.createEnumeration
' loop over all text elements

102 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://wiki.services.openoffice.org/w/index.php?oldid=96862

Paragraphs and Paragraph Portions

While Enum.hasMoreElements
 TextElement = Enum.nextElement

 If TextElement.supportsService("com.sun.star.text.TextTable") Then
 MsgBox "The current block contains a table."
 End If

 If TextElement.supportsService("com.sun.star.text.Paragraph") Then
 MsgBox "The current block contains a paragraph."
 End If

Wend

The example creates a Doc document object which references the current
OpenOffice.org document. With the aid of Doc, the example then creates an
Enumeration object that traverses through the individual parts of the text (paragraphs
and tables) and assigns the current element to TextElement object. The example
uses the supportsService method to check whether the TextElement is a paragraph
or a table.

Paragraphs

The com.sun.star.text.Paragraph service grants access to the content of a paragraph.
The text in the paragraph can be retrieved and modified using the String property:

Dim Doc As Object
Dim Enum As Object
Dim TextElement As Object

Doc = StarDesktop.CurrentComponent
Enum = Doc.Text.createEnumeration

While Enum.hasMoreElements
 TextElement = Enum.nextElement

 If TextElement.supportsService("com.sun.star.text.Paragraph") Then
 TextElement.String = Replace(TextElement.String, "you", "U")
 TextElement.String = Replace(TextElement.String, "too", "2")
 TextElement.String = Replace(TextElement.String, "for", "4")
 End If

Wend

The example opens the current text document and passes through it with the help of
the Enumeration object. It uses the TextElement.String property in all paragraphs to
access the relevant paragraphs and replaces the you, too and for strings with the
U, 2 and 4 characters. The Replace function used for replacing does not fall within
the standard linguistic scope of OpenOffice.org Basic. This is an instance of the
example function described in Search and Replace.

Chapter 6 · Text Documents 103

http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html

Paragraphs and Paragraph Portions

Note – The content of the procedure described here for accessing the paragraphs
of a text is comparable with the Paragraphs listing used in VBA, which is provided in
the Range and Document objects available there. Whereas in VBA the paragraphs are
accessed by their number (for example, by the Paragraph(1) call), in OpenOffice.org
Basic, the Enumeration object described previously should be used.

There is no direct counterpart in OpenOffice.org Basic for the Characters,
Sentences and Words lists provided in VBA. You do, however, have the option of
switching to a TextCursor which allows for navigation at the level of characters,
sentences and words.

Paragraph Portions

The previous example may change the text as requested, but it may sometimes also
destroy the formatting.

This is because a paragraph in turn consists of individual sub-objects. Each of these
sub-objects contains its own formatting information. If the center of a paragraph, for
example, contains a word printed in bold, then it will be represented in
OpenOffice.org by three paragraph portions: the portion before the bold type, then
the word in bold, and finally the portion after the bold type, which is again depicted as
normal.

If the text of the paragraph is now changed using the paragraph's String property,
then OpenOffice.org first deletes the old paragraph portions and inserts a new
paragraph portion. The formatting of the previous sections is then lost.

To prevent this effect, the user can access the associated paragraph portions rather
than the entire paragraph. Paragraphs provide their own Enumeration object for this
purpose. The following example shows a double loop which passes over all
paragraphs of a text document and the paragraph portions they contain and applies
the replacement processes from the previous example:

Dim Doc As Object
Dim Enum1 As Object
Dim Enum2 As Object
Dim TextElement As Object
Dim TextPortion As Object

Doc = StarDesktop.CurrentComponent
Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs
While Enum1.hasMoreElements
 TextElement = Enum1.nextElement

104 OpenOffice.org 3.1 BASIC Guide · April 2009

Paragraphs and Paragraph Portions

 If TextElement.supportsService("com.sun.star.text.Paragraph") Then
 Enum2 = TextElement.createEnumeration
 ' loop over all sub-paragraphs

 While Enum2.hasMoreElements
 TextPortion = Enum2.nextElement
 MsgBox "'" & TextPortion.String & "'"
 TextPortion.String = Replace(TextPortion.String, "you", "U")
 TextPortion.String = Replace(TextPortion.String, "too", "2")
 TextPortion.String = Replace(TextPortion.String, "for", "4")
 Wend

 End If
Wend

The example runs through a text document in a double loop. The outer loop refers to
the paragraphs of the text. The inner loop processes the paragraph portions in these
paragraphs. The example code modifies the content in each of these paragraph
portions using the String property of the string. as is the case in the previous
example for paragraphs. Since however, the paragraph portions are edited directly,
their formatting information is retained when replacing the string.

Formatting

There are various ways of formatting text. The easiest way is to assign the format
properties directly to the text sequence. This is called direct formatting. Direct
formatting is used in particular with short documents because the formats can be
assigned by the user with the mouse. You can, for example, highlight a certain word
within a text using bold type or center a line.

In addition to direct formatting, you can also format text using templates. This is
called indirect formatting. With indirect formatting, the user assigns a pre-defined
template to the relevant text portion. If the layout of the text is changed at a later date,
the user only needs to change the template. OpenOffice.org then changes the way in
which all text portions which use this template are depicted.

Note – In VBA, the formatting properties of an object are usually spread over a
range of sub-objects (for example, Range.Font, Range.Borders, Range.Shading,
Range.ParagraphFormat). The properties are accessed by means of cascading
expressions (for example, Range.Font.AllCaps). In OpenOffice.org Basic, the
formatting properties on the other hand are available directly, using the relevant
objects (TextCursor, Paragraph, and so on). You will find an overview of the
character and paragraph properties available in OpenOffice.org in the following two
sections.

Chapter 6 · Text Documents 105

Paragraphs and Paragraph Portions

Note – The formatting properties can be found in each object (Paragraph,
TextCursor, and so on) and can be applied directly.

Character Properties

Those format properties that refer to individual characters are described as character
properties. These include bold type and the font type. Objects that allow character
properties to be set have to support the com.sun.star.style.CharacterProperties
service. OpenOffice.org recognizes a whole range of services that support this
service. These include the previously described com.sun.star.text.Paragraph services
for paragraphs as well as the com.sun.star.text.TextPortion services for paragraph
portions.

The com.sun.star.style.CharacterProperties service does not provide any interfaces,
but instead offers a range of properties through which character properties can be
defined and called. A complete list of all character properties can be found in the
OpenOffice.org API reference. The following list describes the most important
properties:

 CharFontName (String)

name of font type selected.

 CharColor (Long)

text color.

 CharHeight (Float)

character height in points (pt).

 CharUnderline (Constant group)

type of underscore (constants in accordance with
com.sun.star.awt.FontUnderline).

 CharWeight (Constant group)

 font weight (constants in accordance with com.sun.star.awt.FontWeight).

 CharBackColor (Long)

 background color.

 CharKeepTogether (Boolean)

 suppression of automatic line break.

106 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontWeight.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/FontUnderline.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html

Paragraphs and Paragraph Portions

 CharStyleName (String)

 name of character template.

Paragraph Properties

Formatting information that does not refer to individual characters, but to the entire
paragraph is considered to be a paragraph property. This includes the distance of the
paragraph from the edge of the page as well as line spacing. The paragraph
properties are available through the com.sun.star.style.ParagraphProperties service.

Even the paragraph properties are available in various objects. All objects that
support the com.sun.star.text.Paragraph service also provide support for the
paragraph properties in com.sun.star.style.ParagraphProperties.

A complete list of the paragraph properties can be found in the OpenOffice.org API
reference. The most common paragraph properties are:

 ParaAdjust (enum)

vertical text orientation (constants in accordance with
com.sun.star.style.ParagraphAdjust).

 ParaLineSpacing (struct)

line spacing (structure in accordance with com.sun.star.style.LineSpacing).

 ParaBackColor (Long)

background color.

 ParaLeftMargin (Long)

left margin in 100ths of a millimeter.

 ParaRightMargin (Long)

right margin in 100ths of a millimeter.

 ParaTopMargin (Long)

top margin in 100ths of a millimeter.

 ParaBottomMargin (Long)

bottom margin in 100ths of a millimeter.

 ParaTabStops (Array of struct)

type and position of tabs (array with structures of the type
com.sun.star.style.TabStop).

Chapter 6 · Text Documents 107

http://api.openoffice.org/docs/common/ref/com/sun/star/style/TabStop.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/LineSpacing.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html

Paragraphs and Paragraph Portions

 ParaStyleName (String)

name of the paragraph template.

Example: simple HTML export

The following example demonstrates how to work with formatting information. It
iterates through a text document and creates a simple HTML file. Each paragraph is
recorded in its own HTML element <P> for this purpose. Paragraph portions displayed
in bold type are marked using a HTML element when exporting.

Dim FileNo As Integer, Filename As String, CurLine As String
Dim Doc As Object
Dim Enum1 As Object, Enum2 As Object
Dim TextElement As Object, TextPortion As Object

Filename = "c:\text.html"
FileNo = Freefile
Open Filename For Output As #FileNo
Print #FileNo, "<HTML><BODY>"
Doc = StarDesktop.CurrentComponent
Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs
While Enum1.hasMoreElements
 TextElement = Enum1.nextElement

 If TextElement.supportsService("com.sun.star.text.Paragraph") Then
 Enum2 = TextElement.createEnumeration
 CurLine = "<P>"

 ' loop over all paragraph portions
 While Enum2.hasMoreElements
 TextPortion = Enum2.nextElement

 If TextPortion.CharWeight = com.sun.star.awt.FontWeight.BOLD THEN
 CurLine = CurLine & "" & TextPortion.String & ""
 Else
 CurLine = CurLine & TextPortion.String
 End If

 Wend

 ' output the line
 CurLine = CurLine & "</P>"
 Print #FileNo, CurLine
 End If

Wend

' write HTML footer
Print #FileNo, "</BODY></HTML>"
Close #FileNo

108 OpenOffice.org 3.1 BASIC Guide · April 2009

Paragraphs and Paragraph Portions

The basic structure of the example is oriented towards the examples for running
though the paragraph portions of a text already discussed previously. The functions
for writing the HTML file, as well as a test code that checks the font weight of the
corresponding text portions and provides paragraph portions in bold type with a
corresponding HTML tag, have been added.

Default values for character and paragraph
properties

Direct formatting always takes priority over indirect formatting. In other words,
formatting using templates is assigned a lower priority than direct formatting in a text.

Establishing whether a section of a document has been directly or indirectly formatted
is not easy. The symbol bars provided by OpenOffice.org show the common text
properties such as font type, weight and size. However, whether the corresponding
settings are based on template or direct formatting in the text is still unclear.

OpenOffice.org Basic provides the getPropertyState method, with which
programmers can check how a certain property was formatted. As a parameter, this
takes the name of the property and returns a constant that provides information about
the origin of the formatting. The following responses, which are defined in the
com.sun.star.beans.PropertyState enumeration, are possible:

com.sun.star.beans.PropertyState.DIRECT_VALUE

the property is defined directly in the text (direct formatting)

com.sun.star.beans.PropertyState.DEFAULT_VALUE

the property is defined by a template (indirect formatting)

com.sun.star.beans.PropertyState.AMBIGUOUS_VALUE

the property is unclear. This status arises, for example, when querying the bold
type property of a paragraph, which includes both words depicted in bold and
words depicted in normal font.

The following example shows how format properties can be edited in OpenOffice.org.
It searches through a text for paragraph portions which have been depicted as bold
type using direct formatting. If it encounters a corresponding paragraph portion, it
deletes the direct formatting using the setPropertyToDefault method and assigns a
MyBold character template to the corresponding paragraph portion.

Dim Doc As Object
Dim Enum1 As Object
Dim Enum2 As Object
Dim TextElement As Object
Dim TextPortion As Object

Chapter 6 · Text Documents 109

http://api.openoffice.org/docs/common/ref/com/sun/star/beans/PropertyState.html

Paragraphs and Paragraph Portions

Doc = StarDesktop.CurrentComponent
Enum1 = Doc.Text.createEnumeration

' loop over all paragraphs
While Enum1.hasMoreElements
 TextElement = Enum1.nextElement

 If TextElement.supportsService("com.sun.star.text.Paragraph") Then
 Enum2 = TextElement.createEnumeration
 ' loop over all paragraph portions

 While Enum2.hasMoreElements
 TextPortion = Enum2.nextElement

 If TextPortion.CharWeight = _
 com.sun.star.awt.FontWeight.BOLD AND _
 TextPortion.getPropertyState("CharWeight") = _
 com.sun.star.beans.PropertyState.DIRECT_VALUE Then
 TextPortion.setPropertyToDefault("CharWeight")
 TextPortion.CharStyleName = "MyBold"
 End If
 Wend
 End If
Wend

Editing Text Documents

The previous section has already discussed a whole range of options for editing text
documents, focusing on the com.sun.star.text.TextPortion and
com.sun.star.text.Paragraph services, which grant access to paragraph portions as
well as paragraphs. These services are appropriate for applications in which the
content of a text is to be edited in one pass through a loop. However, this is not
sufficient for many problems. OpenOffice.org provides the
com.sun.star.text.TextCursor service for more complicated tasks, including navigating
backward within a document or navigating based on sentences and words rather than
TextPortions.

The TextCursor

A TextCursor in the OpenOffice.org API is comparable with the visible cursor used in
a OpenOffice.org document. It marks a certain point within a text document and can
be navigated in various directions through the use of commands. The TextCursor
objects available in OpenOffice.org Basic should not, however, be confused with the

110 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/Paragraph.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextPortion.html

The TextCursor

visible cursor. These are two very different things.

Note – Terminology differs from that used in VBA: In terms of scope of function, the
Range object from VBA can be compared with the TextCursor object in
OpenOffice.org and not — as the name possibly suggests — with the Range object in
OpenOffice.org.

The TextCursor object in OpenOffice.org, for example, provides methods for
navigating and changing text which are included in the Range object in VBA (for
example, MoveStart, MoveEnd, InsertBefore, InsertAfter). The corresponding
counterparts of the TextCursor object in OpenOffice.org are described in the following
sections.

Navigating within a Text

The TextCursor object in OpenOffice.org Basic acts independently from the visible
cursor in a text document. A program-controlled position change of a TextCursor
object has no impact whatsoever on the visible cursor. Several TextCursor objects
can even be opened for the same document and used in various positions, which are
independent of one another.

A TextCursor object is created using the createTextCursor call:

Dim Doc As Object
Dim Cursor As Object

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()

The Cursor object created in this way supports the com.sun.star.text.TextCursor
service, which in turn provides a whole range of methods for navigating within text
documents. The following example first moves the TextCursor ten characters to the
left and then three characters to the right:

Cursor.goLeft(10, False)
Cursor.goRight(3, False)

A TextCursor can highlight a complete area. This can be compared with highlighting
a point in the text using the mouse. The False parameter in the previous function call
specifies whether the area passed over with the cursor movement is highlighted. For
example, the TextCursor in the following example

Cursor.goLeft(10, False)
Cursor.goRight(3, True)

first moves ten characters to the right without highlighting, and then moves back three
characters and highlights this. The area highlighted by the TextCursor therefore

Chapter 6 · Text Documents 111

The TextCursor

begins after the seventh character in the text and ends after the tenth character.

Here are the central methods that the com.sun.star.text.TextCursor service provides
for navigation:

 goLeft (Count, Expand)

 jumps Count characters to the left.

 goRight (Count, Expand)

 jumps Count characters to the right.

 gotoStart (Expand)

 jumps to the start of the text document.

 gotoEnd (Expand)

 jumps to the end of the text document.

 gotoRange (TextRange, Expand)

 jumps to the specified TextRange-Object.

 gotoStartOfWord (Expand)

 jumps to the start of the current word.

 gotoEndOfWord (Expand)

 jumps to the end of the current word.

 gotoNextWord (Expand)

 jumps to the start of the next word.

 gotoPreviousWord (Expand)

 jumps to the start of the previous word.

 isStartOfWord ()

 returns True if the TextCursor is at the start of a word.

 isEndOfWord ()

 returns True if the TextCursor is at the end of a word.

 gotoStartOfSentence (Expand)

 jumps to the start of the current sentence.

 gotoEndOfSentence (Expand)

 jumps to the end of the current sentence.

112 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html

The TextCursor

 gotoNextSentence (Expand)

 jumps to the start of the next sentence.

 gotoPreviousSentence (Expand)

 jumps to the start of the previous sentence.

 isStartOfSentence ()

 returns True if the TextCursor is at the start of a sentence.

 isEndOfSentence ()

 returns True if the TextCursor is at the end of a sentence.

 gotoStartOfParagraph (Expand)

 jumps to the start of the current paragraph.

 gotoEndOfParagraph (Expand)

 jumps to the end of the current paragraph.

 gotoNextParagraph (Expand)

 jumps to the start of the next paragraph.

 gotoPreviousParagraph (Expand)

 jumps to the start of the previous paragraph.

 isStartOfParagraph ()

 returns True if the TextCursor is at the start of a paragraph.

 isEndOfParagraph ()

 returns True if the TextCursor is at the end of a paragraph.

The text is divided into sentences on the basis of sentence symbols. Periods are, for
example, interpreted as symbols indicating the end of sentences.

The Expand parameter is a Boolean value which specifies whether the area passed
over during navigation is to be highlighted. All navigation methods furthermore return
a parameter which specifies whether the navigation was successful or whether the
action was terminated for lack of text.

The following is a list of several methods for editing highlighted areas using a
TextCursor and which also support the com.sun.star.text.TextCursor service:

 collapseToStart ()

resets the highlighting and positions the TextCursor at the start of the previously
highlighted area.

Chapter 6 · Text Documents 113

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html

The TextCursor

 collapseToEnd ()

resets the highlighting and positions the TextCursor at the end of the previously
highlighted area.

 isCollapsed ()

returns True if the TextCursor does not cover any highlighting at present.

Formatting Text with TextCursor

The com.sun.star.text.TextCursor service supports all the character and paragraph
properties that were presented at the start of this chapter.

The following example shows how these can be used in conjunction with a
TextCursor. It passes through a complete document and formats the first word of
every sentence in bold type.

Dim Doc As Object
Dim Cursor As Object
Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor

Do
 Cursor.gotoEndOfWord(True)
 Cursor.CharWeight = com.sun.star.awt.FontWeight.BOLD
 Proceed = Cursor.gotoNextSentence(False)
 Cursor.gotoNextWord(False)
Loop While Proceed

The example first creates a document object for the text that has just been opened.
Then it iterates through the entire text, sentence by sentence, and highlights each of
the first words and formats this in bold.

Retrieving and Modifying Text Contents

If a TextCursor contains a highlighted area, then this text is available by means of the
String property of the TextCursor object. The following example uses the String
property to display the first words of a sentence in a message box:

Dim Doc As Object
Dim Cursor As Object
Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor

114 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextCursor.html

The TextCursor

Do
 Cursor.gotoEndOfWord(True)
 MsgBox Cursor.String
 Proceed = Cursor.gotoNextSentence(False)
 Cursor.gotoNextWord(False)
Loop While Proceed

The first word of each sentence can be modified in the same way using the String
property:

Dim Doc As Object
Dim Cursor As Object
Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor

Do
 Cursor.gotoEndOfWord(True)
 Cursor.String = "Ups"
 Proceed = Cursor.gotoNextSentence(False)
 Cursor.gotoNextWord(False)
Loop While Proceed

If the TextCursor contains a highlighted area, an assignment to the String property
replaces this with the new text. If there is no highlighted area, the text is inserted at
the present TextCursor position.

Inserting Control Codes

In some situations, it is not the actual text of a document, but rather its structure that
needs modifying. OpenOffice.org provides control codes for this purpose. These are
inserted in the text and influence its structure. The control codes are defined in the
com.sun.star.text.ControlCharacter group of constants. The following control codes
are available in OpenOffice.org:

 PARAGRAPH_BREAK

 paragraph break.

 LINE_BREAK

 line break within a paragraph.

 SOFT_HYPHEN

 possible point for syllabification.

 HARD_HYPHEN

 obligatory point for syllabification.

Chapter 6 · Text Documents 115

http://api.openoffice.org/docs/common/ref/com/sun/star/text/ControlCharacter.html

The TextCursor

 HARD_SPACE

 protected space that is not spread out or compressed in justified text.

To insert the control codes, you need not only the cursor but also the associated text
document objects. The following example inserts a paragraph after the 20th character
of a text:

Dim Doc As Object
Dim Cursor As Object
Dim Proceed As Boolean

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor
Cursor.goRight(20, False)
Doc.Text.insertControlCharacter(Cursor, _
 com.sun.star.text.ControlCharacter.PARAGRAPH_BREAK, False)

The False parameter in the call of the insertControlCharacter method ensures that
the area currently highlighted by the TextCursor remains after the insert operation. If
the True parameter is passed here, then insertControlCharacter replaces the
current text.

Searching for Text Portions

In many instances, it is the case that a text is to be searched for a particular term and
the corresponding point needs to be edited. All OpenOffice.org documents provide a
special interface for this purpose, and this interface always functions in accordance
with the same principle: Before a search process, what is commonly referred to as a
SearchDescriptor must first be created. This defines what OpenOffice.org searches
for in a document. A SearchDescriptor is an object which supports the
com.sun.star.util. SearchDescriptor service and can be created by means of the
createSearchDescriptor method of a document:

Dim SearchDesc As Object
SearchDesc = Doc.createSearchDescriptor

Once the SearchDescriptor has been created, it receives the text to be searched for:

SearchDesc.searchString="any text"

In terms of its function, the SearchDescriptor is best compared with the search
dialog from OpenOffice.org. In a similar way to the search window, the settings
needed for a search can be set in the SearchDescriptor object.

The properties are provided by the com.sun.star.util.SearchDescriptor service:

116 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/util/SearchDescriptor.html

Searching for Text Portions

 SearchBackwards (Boolean)

 searches through the text backward rather than forward.

 SearchCaseSensitive (Boolean)

 takes uppercase and lowercase characters into consideration during the
search.

 SearchRegularExpression (Boolean)

 treats the search expression like a regular expression.

 SearchStyles (Boolean)

 searches through the text for the specified paragraph template.

 SearchWords (Boolean)

 only searches for complete words.

The OpenOffice.org SearchSimilarity (or “fuzzy match”) function is also available in
OpenOffice.org Basic. With this function, OpenOffice.org searches for an expression
that may be similar to but not exactly the same as the search expression. The
number of additional, deleted and modified characters for these expressions can be
defined individually. Here are the associated properties of the
com.sun.star.util.SearchDescriptor service:

 SearchSimilarity (Boolean)

 performs a similarity search.

 SearchSimilarityAdd (Short)

 number of characters which may be added for a similarity search.

 SearchSimilarityExchange (Short)

 number of characters which may be replaced as part of a similarity search.

 SearchSimilarityRemove (Short)

 number of characters which may be removed as part of a similarity search.

 SearchSimilarityRelax (Boolean)

 takes all deviation rules into consideration at the same time for the search
expression.

Once the SearchDescriptor has been prepared as requested, it can be applied to the
text document. The OpenOffice.org documents provide the findFirst and findNext
methods for this purpose:

Found = Doc.findFirst (SearchDesc)

Do While Found

Chapter 6 · Text Documents 117

Searching for Text Portions

 ' Suchergebnis bearbeiten
 Found = Doc.findNext(Found.End, Search)
Loop

The example finds all matches in a loop and returns a TextRange object, which refers
to the found text passage.

Example: Similarity Search

This example shows how a text can be searched for the word "turnover" and the
results formatted in bold type. A similarity search is used so that not only the word
“turnover”, but also the plural form "turnovers" and declinations such as "turnover's"
are found. The found expressions differ by up to two letters from the search
expression:

Dim SearchDesc As Object
Dim Doc As Object

Doc = StarDesktop.CurrentComponent
SearchDesc = Doc.createSearchDescriptor
SearchDesc.SearchString="turnover"
SearchDesc.SearchSimilarity = True
SearchDesc.SearchSimilarityAdd = 2
SearchDesc.SearchSimilarityExchange = 2
SearchDesc.SearchSimilarityRemove = 2
SearchDesc.SearchSimilarityRelax = False
Found = Doc.findFirst (SearchDesc)

Do While Found
 Found.CharWeight = com.sun.star.awt.FontWeight.BOLD
 Found = Doc.findNext(Found.End, Search)
Loop

Note – The basic idea of search and replace in OpenOffice.org is comparable to
that used in VBA. Both interfaces provide you with an object, through which the
properties for searching and replacing can be defined. This object is then applied to
the required text area in order to perform the action. Whereas the responsible
auxiliary object in VBA can be reached through the Find property of the Range object,
in OpenOffice.org Basic it is created by the createSearchDescriptor or
createReplaceDescriptor call of the document object. Even the search properties
and methods available differ.

As in the old API from OpenOffice.org, searching and replacing text in the new API is
also performed using the document object. Whereas previously there was an object
called SearchSettings especially for defining the search options, in the new object
searches are now performed using a SearchDescriptor or ReplaceDescriptor object
for automatically replacing text. These objects cover not only the options, but also the
current search text and, if necessary, the associated text replacement. The descriptor

118 OpenOffice.org 3.1 BASIC Guide · April 2009

Searching for Text Portions

objects are created using the document object, completed in accordance with the
relevant requests, and then transferred back to the document object as parameters
for the search methods.

Replacing Text Portions

Just as with the search function, the replacement function from OpenOffice.org is
also available in OpenOffice.org Basic. The two functions are handled identically. A
special object which records the parameters for the process is also first needed for a
replacement process. It is called a ReplaceDescriptor and supports the

com.sun.star.util.ReplaceDescriptor

service. All the properties of the SearchDescriptor described in the previous
paragraph are also supported by ReplaceDescriptor. For example, during a
replacement process, case sensitivity can also be activated and deactivated, and
similarity searches can be performed.

The following example demonstrates the use of ReplaceDescriptors for a search
within a OpenOffice.org document.

Dim I As Long
Dim Doc As Object
Dim Replace As Object
Dim BritishWords(5) As String
Dim USWords(5) As String

BritishWords() = Array("colour", "neighbour", "centre", "behaviour", _
 "metre", "through")
USWords() = Array("color", "neighbor", "center", "behavior", _
 "meter", "thru")

Doc = StarDesktop.CurrentComponent
Replace = Doc.createReplaceDescriptor

For I = 0 To 5
 Replace.SearchString = BritishWords(I)
 Replace.ReplaceString = USWords(I)
 Doc.replaceAll(Replace)
Next I

The expressions for searching and replacing are set using the SearchString and
ReplaceString properties of the ReplaceDescriptors. The actual replacement
process is finally implemented using the replaceAll method of the document object,
which replaces all occurrences of the search expression.

Chapter 6 · Text Documents 119

Replacing Text Portions

Example: searching and replacing text with regular
expressions

The replacement function of OpenOffice.org is particularly effective when used in
conjunction with regular expressions. These provide the option of defining a variable
search expression with place holders and special characters rather than a fixed
value.

The regular expressions supported by OpenOffice.org are described in detail in the
online help section for OpenOffice.org. Here are a few examples:

 A period within a search expression stands for any character. The search
expression sh.rt therefore can stand for both for shirt and for short.

 The character ^ marks the start of a paragraph. All occurrences of the name Peter
that are at the start of a paragraph can therefore be found using the search
expression ^Peter.

 The character $ marks a paragraph end. All occurrences of the name Peter that
are at the end of a paragraph can therefore be found using the search expression
Peter$.

 A * indicates that the preceding character may be repeated any number of times.
It can be combined with the period as a place holder for any character. The
temper.*e expression, for example, can stand for the expressions temperance and
temperature.

The following example shows how all empty lines in a text document can be removed
with the help of the regular expression ^$:

Dim Doc As Object
Dim Replace As Object
Dim I As Long

Doc = StarDesktop.CurrentComponent
Replace = Doc.createReplaceDescriptor
Replace.SearchRegularExpression = True
Replace.SearchString = "^$"
Replace.ReplaceString = ""

Doc.replaceAll(Replace)

More Than Just Text

So far, this chapter has only dealt with text paragraphs and their portions. But text
documents may also contain other objects. These include tables, drawings, text fields
and directories. All of these objects can be anchored to any point within a text.

120 OpenOffice.org 3.1 BASIC Guide · April 2009

Replacing Text Portions

Thanks to these common features, all of these objects in OpenOffice.org support a
common basic service called com.sun.star.text.TextContent. This provides the
following properties:

 AnchorType (Enum)

 determines the anchor type of a TextContent object (default values in
accordance with com.sun.star.text.TextContentAnchorType enumeration).

 AnchorTypes (sequence of Enum)

 enumeration of all AnchorTypes which support a special TextContent object.

 TextWrap (Enum)

 determines the text wrap type around a TextContent object (default values in
accordance with com.sun.star.text.WrapTextMode enumeration).

The TextContent objects also share some methods – in particular, those for creating,
inserting and deleting objects.

 A new TextContent object is created using the createInstance method of the
document object.

 An object is inserted using the insertTextContent method of the text object.
 TextContent objects are deleted using the removeTextContent method.

You will find a range of examples which use these methods in the following sections.

Tables

The following example creates a table with the help of the createInstance method
described previously.

Dim Doc As Object
Dim Table As Object
Dim Cursor As Object

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")
Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Once created, the table is set to the number of rows and columns requested using an
initialize call and then inserted in the text document using insertTextContent.

Chapter 6 · Text Documents 121

http://api.openoffice.org/docs/common/ref/com/sun/star/text/WrapTextMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContentAnchorType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextContent.html

Tables

As can be seen in the example, the insertTextContent method expects not only the
Content object to be inserted, but two other parameters:

 a Cursor object which determines the insert position
 a Boolean variable which specifies whether the Content object is to replace the

current selection of the cursor (True value) or is to be inserted before the current
selection in the text (False)

Note – When creating and inserting tables in a text document, objects similar to
those available in VBA are used in OpenOffice.org Basic: The document object and a
TextCursor object in OpenOffice.org Basic, or the Range object as the VBA
counterpart. Whereas the Document.Tables.Add method takes on the task of creating
and setting the table in VBA, this is created in OpenOffice.org Basic in accordance
with the previous example using createInstance, initialized, and inserted in the
document through insertTextContent.

The tables inserted in a text document can be determined using a simple loop. The
method getTextTables() of the text document object is used for this purpose:

Dim Doc As Object
Dim TextTables As Object
Dim Table As Object
Dim I As Integer
Doc = StarDesktop.CurrentComponent
TextTables = Doc.getTextTables()
For I = 0 to TextTables.count - 1
 Table = TextTables(I)
 ' Editing table
Next I

Note – Text tables are available in OpenOffice.org through the TextTables list of the
document object. The previous example shows how a text table can be created. The
options for accessing text tables are described in the following section.

Editing Tables

A table consists of individual rows. These in turn contain the various cells. Strictly
speaking, there are no table columns in OpenOffice.org. These are produced
implicitly by arranging the rows (one under another) next to one another. To simplify
access to the tables, OpenOffice.org, however, provides some methods which
operate using columns. These are useful if no cells have been merged in the table.

Let us first take the properties of the table itself. These are defined in the
com.sun.star.text.TextTable service. Here is an list of the most important properties of
the table object:

122 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTable.html

Tables

 BackColor (Long)

 background color of table.

 BottomMargin (Long)

 bottom margin in 100ths of a millimeter.

 LeftMargin (Long)

 left margin in 100ths of a millimeter.

 RightMargin (Long)

 right margin in 100ths of a millimeter.

 TopMargin (Long)

 top margin in 100ths of a millimeter.

 RepeatHeadline (Boolean)

 table header is repeated on every page.

 Width (Long)

 absolute width of the table in 100ths of a millimeter.

Rows

A table consists of a list containing rows. The following example shows how the rows
of a table can be retrieved and formatted.

Dim Doc As Object
Dim Table As Object
Dim Cursor As Object
Dim Rows As Object
Dim Row As Object
Dim I As Integer

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")
Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)
Rows = Table.getRows
For I = 0 To Rows.getCount() - 1
 Row = Rows.getByIndex(I)
 Row.BackColor = &HFF00FF
Next

The example first creates a list containing all rows using a Table.getRows call. The
getCount and getByIndex methods allow the list to be further processed and belongs

Chapter 6 · Text Documents 123

Tables

to the com.sun.star.table.XtableRows interface. The getByIndex method returns a
row object, which supports the com.sun.star.text.TextTableRow service.

Here are the central methods of the com.sun.star.table.XtableRows interface:

 getByIndex(Integer)

 returns a row object for the specified index.

 getCount()

 returns the number of row objects.

 insertByIndex(Index, Count)

 inserts Count rows in the table as of the Index position.

 removeByIndex(Index, Count)

 deletes Count rows from the table as of the Index position.

Whereas the getByIndex and getCount methods are available in all tables, the
insertByIndex and removeByIndex methods can only be used in tables that do not
contain merged cells.

The com.sun.star.text.TextTableRow service provides the following properties:

 BackColor (Long)

 background color of row.

 Height (Long)

 height of line in 100ths of a millimeter.

 IsAutoHeight (Boolean)

 table height is dynamically adapted to the content.

 VertOrient (const)

 vertical orientation of the text frame — details on vertical orientation of the text
within the table (values in accordance with com.sun.star.text.VertOrientation)

Columns

Columns are accessed in the same way as rows, using the getByIndex, getCount,
insertByIndex, and removeByIndex methods on the Column object, which is reached
through getColumns. They can, however, only be used in tables that do not contain
merged table cells. Cells cannot be formatted by column in OpenOffice.org Basic. To
do so, the method of formatting individual table cells must be used.

124 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/VertOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/XtableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextTableRow.html

Tables

Cells

Each cell of a OpenOffice.org document has a unique name. If the cursor of
OpenOffice.org is in a cell, then the name of that cell can be seen in the status bar.
The top left cell is usually called A1 and the bottom right row is usually called Xn,
where X stands for the letters of the top column and n for the numbers of the last row.
The cell objects are available through the getCellByName() method of the table
object. The following example shows a loop that passes through all the cells of a
table and enters the corresponding row and column numbers into the cells.

Dim Doc As Object
Dim Table As Object
Dim Cursor As Object
Dim Rows As Object
Dim RowIndex As Integer
Dim Cols As Object
Dim ColIndex As Integer
Dim CellName As String
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()

Table = Doc.createInstance("com.sun.star.text.TextTable")
Table.initialize(5, 4)

Doc.Text.insertTextContent(Cursor, Table, False)

Rows = Table.getRows
Cols = Table.getColumns

For RowIndex = 1 To Rows.getCount()
 For ColIndex = 1 To Cols.getCount()
 CellName = Chr(Asc("A") - 1 + ColIndex) & RowIndex
 Cell = Table.getCellByName(CellName)
 Cell.String = "row: " & CStr(RowIndex) + ", column: " & CStr(ColIndex)
 Next
Next

A table cell is comparable with a standard text. It supports the createTextCursor
interface for creating an associated TextCursor object.

CellCursor = Cell.createTextCursor()

All formatting options for individual characters and paragraphs are therefore
automatically available.

The following example searches through all tables of a text document and applies the
right-align format to all cells with numerical values by means of the corresponding
paragraph property.

Dim Doc As Object
Dim TextTables As Object

Chapter 6 · Text Documents 125

Tables

Dim Table As Object
Dim CellNames
Dim Cell As Object
Dim CellCursor As Object
Dim I As Integer
Dim J As Integer

Doc = StarDesktop.CurrentComponent
TextTables = Doc.getTextTables()

For I = 0 to TextTables.count - 1
 Table = TextTables(I)
 CellNames = Table.getCellNames()

 For J = 0 to UBound(CellNames)
 Cell = Table.getCellByName(CellNames(J))
 If IsNumeric(Cell.String) Then
 CellCursor = Cell.createTextCursor()
 CellCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.RIGHT
 End If
 Next
Next

The example creates a TextTables list containing all tables of a text that are
traversed in a loop. OpenOffice.org then creates a list of the associated cell names
for each of these tables. There are passed through in turn in a loop. If a cell contains
a numerical value, then the example changes the formatting correspondingly. To do
this, it first creates a TextCursor object which makes reference to the content of the
table cell and then adapts the paragraph properties of the table cell.

Text Frames

Text frames are considered to be TextContent objects, just like tables and graphs.
They may essentially consist of standard text, but can be placed at any position on a
page and are not included in the text flow.

As with all TextContent objects, a distinction is also made with text frames between
the actual creation and insertion in the document.

Dim Doc As Object
Dim TextTables As Object
Dim Cursor As Object
Dim Frame As Object

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()
Frame = Doc.createInstance("com.sun.star.text.TextFrame")
Doc.Text.insertTextContent(Cursor, Frame, False)

126 OpenOffice.org 3.1 BASIC Guide · April 2009

Text Frames

The text frame is created using the createInstance method of the document object.
The text frame created in this way can then be inserted in the document using the
insertTextContent method of the Text object. In so doing, the name of the proper
com.sun.star.text.TextFrame service should be specified.

The text frame's insert position is determined by a Cursor object, which is also
executed when inserted.

Note – Text frames are OpenOffice.org's counterpart to the position frame used in
Word. Whereas VBA uses the Document.Frames.Add method for this purpose,
creation in OpenOffice.org Basic is performed using the previous procedure with the
aid of a TextCursor as well as the createInstance method of the document object.

Text frame objects provide a range of properties with which the position and behavior
of the frame can be influenced. The majority of these properties are defined in the
com.sun.star.text.BaseFrameProperties service, which is also supported by each
TextFrame service. The central properties are:

 BackColor (Long)

 background color of the text frame.

 BottomMargin (Long)

 bottom margin in 100ths of a millimeter.

 LeftMargin (Long)

 left margin in 100ths of a millimeter.

 RightMargin (Long)

 right margin in 100ths of a millimeter.

 TopMargin (Long)

 top margin in 100ths of a millimeter.

 Height (Long)

 height of text frame in 100ths of a millimeter.

 Width (Long)

 width of text frame in 100ths of a millimeter.

 HoriOrient (const)

 horizontal orientation of text frame (in accordance with
com.sun.star.text.HoriOrientation).

Chapter 6 · Text Documents 127

http://api.openoffice.org/docs/common/ref/com/sun/star/text/HoriOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/BaseFrameProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/TextFrame.html

Text Frames

 VertOrient (const)

 vertical orientation of text frame (in accordance with
com.sun.star.text.VertOrientation).

The following example creates a text frame using the properties described previously:

Dim Doc As Object
Dim TextTables As Object
Dim Cursor As Object
Dim Frame As Object

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()
Cursor.gotoNextWord(False)
Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Frame.Width = 3000
Frame.Height = 1000
Frame.AnchorType = com.sun.star.text.TextContentAnchorType.AS_CHARACTER
Frame.TopMargin = 0
Frame.BottomMargin = 0
Frame.LeftMargin = 0
Frame.RightMargin = 0
Frame.BorderDistance = 0
Frame.HoriOrient = com.sun.star.text.HoriOrientation.NONE
Frame.VertOrient = com.sun.star.text.VertOrientation.LINE_TOP

Doc.Text.insertTextContent(Cursor, Frame, False)

The example creates a TextCursor as the insertion mark for the text frame. This is
positioned between the first and second word of the text. The text frame is created
using Doc.createInstance. The properties of the text frame objects are set to the
starting values required.

The interaction between the AnchorType (from the TextContent Service) and
VertOrient (from the BaseFrameProperties Service) properties should be noted here.
AnchorType receives the AS_CHARACTER value. The text frame is therefore inserted
directly in the text flow and behaves like a character. It can, for example, be moved
into the next line if a line break occurs. The LINE_TOP value of the VertOrient
property ensures that the upper edge of the text frame is at the same height as the
upper edge of the character.

Once initialization is complete, the text frame is finally inserted in the text document
using a call from insertTextContent.

To edit the content of a text frame, the user uses the TextCursor, which has already
been mentioned numerous times and is also available for text frames.

Dim Doc As Object
Dim TextTables As Object
Dim Cursor As Object
Dim Frame As Object

128 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/VertOrientation.html

Text Frames

Dim FrameCursor As Object

Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()
Frame = Doc.createInstance("com.sun.star.text.TextFrame")

Frame.Width = 3000
Frame.Height = 1000

Doc.Text.insertTextContent(Cursor, Frame, False)

FrameCursor = Frame.createTextCursor()
FrameCursor.charWeight = com.sun.star.awt.FontWeight.BOLD
FrameCursor.paraAdjust = com.sun.star.style.ParagraphAdjust.CENTER
FrameCursor.String = "This is a small Test!"

The example creates a text frame, inserts this in the current document and opens a
TextCursor for the text frame. This cursor is used to set the frame font to bold type
and to set the paragraph orientation to centered. The text frame is finally assigned
the “This is a small test!” string.

Text Fields

Text fields are TextContent objects because they provide additional logic extending
beyond pure text. Text fields can be inserted in a text document using the same
methods as those used for other TextContent objects:

Dim Doc As Object
Dim DateTimeField As Object
Dim Cursor As Object
Doc = StarDesktop.CurrentComponent
Cursor = Doc.Text.createTextCursor()

DateTimeField = Doc.createInstance("com.sun.star.text.textfield.DateTime")
DateTimeField.IsFixed = False
DateTimeField.IsDate = True
Doc.Text.insertTextContent(Cursor, DateTimeField, False)

The example inserts a text field with the current date at the start of the current text
document. The True value of the IsDate property results in only the date and not time
being displayed. The False value for IsFixed ensures that the date is automatically
updated when the document is opened.

Note – While the type of a field in VBA is specified by a parameter of the
Document.Fields.Add method, the name of the service that is responsible for the field
type in question defines it in OpenOffice.org Basic.

Chapter 6 · Text Documents 129

Text Fields

In the past, text fields were accessed using a whole range of methods that
OpenOffice.org made available in the old Selection object (for example InsertField,
DeleteUserField, SetCurField).

In OpenOffice.org 2.x, the fields are administered using an object-oriented concept.
To create a text field, a text field of the type required should first be created and
initialized using the properties required. The text field is then inserted in the document
using the insertTextContent method. A corresponding source text can be seen in
the previous example. The most important field types and their properties are
described in the following sections.

In addition to inserting text fields, searching a document for the fields can also be an
important task. The following example shows how all text fields of a text document
can be traversed in a loop and checked for their relevant type.

Dim Doc As Object
Dim TextFieldEnum As Object
Dim TextField As Object
Dim I As Integer

Doc = StarDesktop.CurrentComponent

TextFieldEnum = Doc.getTextFields.createEnumeration

While TextFieldEnum.hasMoreElements()

 TextField = TextFieldEnum.nextElement()

 If TextField.supportsService("com.sun.star.text.textfield.DateTime") Then
 MsgBox "Date/time"
 ElseIf TextField.supportsService("com.sun.star.text.textfield.Annotation")
Then
 MsgBox "Annotation"
 Else
 MsgBox "unknown"
 End If

Wend

The starting point for establishing the text fields present is the TextFields list of the
document object. The example creates an Enumeration object on the basis of this list,
with which all text fields can be queried in turn in a loop. The text fields found are
checked for the service supported using the supportsService method. If the field
proves to be a date/time field or an annotation, then the corresponding field type is
displayed in an information box. If on the other hand, the example encounters
another field, then it displays the information “unknown”.

Below, you will find a list of the most important text fields and their associated
properties. A complete list of all text fields is provided in the API reference in the
com.sun.star.text.textfield module. (When listing the service name of a text field,
uppercase and lowercase characters should be used in OpenOffice.org Basic, as in

130 OpenOffice.org 3.1 BASIC Guide · April 2009

Text Fields

the previous example.)

Number of Pages, Words and Characters

The text fields

 com.sun.star.text.textfield.PageCount
 com.sun.star.text.textfield.WordCount
 com.sun.star.text.textfield.CharacterCount

return the number of pages, words, or characters of a text. They support the following
property:

 NumberingType (const)

 numbering format (guidelines in accordance with constants from
com.sun.star.style.NumberingType).

Current Page

The number of the current page can be inserted in a document using the
com.sun.star.text.textfield.PageNumber text field. The following properties can be
specified:

 NumberingType (const)

 number format (guidelines in accordance with constants from
com.sun.star.style.NumberingType).

 Offset (short)

 offset added to the number of pages (negative specification also possible).

The following example shows how the number of pages can be inserted into the
footer of a document.

Dim Doc As Object
Dim DateTimeField As Object
Dim PageStyles As Object
Dim StdPage As Object
Dim FooterCursor As Object
Dim PageNumber As Object

Doc = StarDesktop.CurrentComponent

PageNumber = Doc.createInstance("com.sun.star.text.textfield.PageNumber")
PageNumber.NumberingType = com.sun.star.style.NumberingType.ARABIC

Chapter 6 · Text Documents 131

http://api.openoffice.org/docs/common/ref/com/sun/star/style/NumberingType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/PageNumber.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/NumberingType.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/CharacterCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/WordCount.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/PageCount.html

Text Fields

PageStyles = Doc.StyleFamilies.getByName("PageStyles")

StdPage = PageStyles("Default")
StdPage.FooterIsOn = True

FooterCursor = StdPage.FooterTextLeft.Text.createTextCursor()
StdPage.FooterTextLeft.Text.insertTextContent(FooterCursor, PageNumber, False)

The example first creates a text field which supports the
com.sun.star.text.textfield.PageNumber service. Since the header and footer lines are
defined as part of the page templates of OpenOffice.org, this is initially established
using the list of all PageStyles.

To ensure that the footer line is visible, the FooterIsOn property is set to True. The
text field is then inserted in the document using the associated text object of the left-
hand footer line.

Annotations

Annotation fields (com.sun.star.text.textfield.Annotation) can be seen by means of a
small yellow symbol in the text. Clicking on this symbol opens a text field, in which a
comment on the current point in the text can be recorded. An annotation field has the
following properties.

 Author (String)

 name of author.

 Content (String)

 comment text.

 Date (Date)

 date on which annotation is written.

Date / Time

A date / time field (com.sun.star.text.textfield.DateTime) represents the current date
or the current time. It supports the following properties:

 IsFixed (Boolean)

 if True, the time details of the insertion remain unchanged, if False, these are
updated each time the document is opened.

132 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/DateTime.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Annotation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/PageNumber.html

Text Fields

 IsDate (Boolean)

 if True, the field displays the current date, otherwise the current time.

 DateTimeValue (struct)

 current content of field (com.sun.star.util.DateTime structure)

 NumberFormat (const)

 format in which the time or date is depicted.

Chapter Name / Number

The name of the current chapter is available through a text field of the
com.sun.star.text.textfield.Chapter type. The form can be defined using two
properties.

 ChapterFormat (const)

 determines whether the chapter name or the chapter number is depicted (in
accordance with com.sun.star.text.ChapterFormat)

 Level (Integer)

 determines the chapter level whose name and/or chapter number is to be
displayed. The value 0 stands for highest level available.

Bookmarks

Bookmarks (Service com.sun.star.text.Bookmark) are TextContent objects.
Bookmarks are created and inserted using the concept already described previously:

Dim Doc As Object
Dim Bookmark As Object
Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Cursor = Doc.Text.createTextCursor()

Bookmark = Doc.createInstance("com.sun.star.text.Bookmark")
Bookmark.Name = "My bookmarks"
Doc.Text.insertTextContent(Cursor, Bookmark, True)

The example creates a Cursor, which marks the insert position of the bookmark and
then the actual bookmark object (Bookmark). The bookmark is then assigned a name

Chapter 6 · Text Documents 133

http://api.openoffice.org/docs/common/ref/com/sun/star/text/Bookmark.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/ChapterFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/textfield/Chapter.html
http://api.openoffice.org/docs/common/ref/com/sun/star/util/DateTime.html

Bookmarks

and is inserted in the document through insertTextContent at the cursor position.

The bookmarks of a text are accessed through a list called Bookmarks. The
bookmarks can either be accessed by their number or their name.

The following example shows how a bookmark can be found within a text, and a text
inserted at its position.

Dim Doc As Object
Dim Bookmark As Object
Dim Cursor As Object

Doc = StarDesktop.CurrentComponent

Bookmark = Doc.Bookmarks.getByName("My bookmarks")

Cursor = Doc.Text.createTextCursorByRange(Bookmark.Anchor)
Cursor.String = "Here is the bookmark"

In this example, the getByName method is used to find the bookmark required by
means of its name. The createTextCursorByRange call then creates a Cursor, which
is positioned at the anchor position of the bookmark. The cursor then inserts the text
required at this point.

134 OpenOffice.org 3.1 BASIC Guide · April 2009

7   C H A P T E R 7

7 Spreadsheet Documents

OpenOffice.org Basic provides an extensive interface for program-controlled creation
and editing of spreadsheets. This chapter describes how to control the relevant
services, methods and properties of spreadsheet documents:

 The Structure of Spreadsheets
 Editing Spreadsheet Documents

The first section addresses the basic structure of spreadsheet documents and shows
you how to access and to edit the contents of individual cells.

The second section concentrates on how to edit spreadsheets efficiently by focusing
on cell areas and the options for searching and replacing cell contents.

Note – The Range object allows you to address any table area and has been
extended in the new API.

The Structure of Spreadsheets

The document object of a spreadsheet is based on the
com.sun.star.sheet.SpreadsheetDocument service. Each of these documents may
contain several spreadsheets. In this guide, a table-based document or spreadsheet

135

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/SpreadsheetDocument.html

Spreadsheet Documents

document is the entire document, whereas a spreadsheet (or sheet for short) is a
sheet (table) in the document.

Note – Different terminology for spreadsheets and their content is used in VBA and
OpenOffice.org Basic. Whereas the document object in VBA is called a Workbook
and its individual pages Worksheets, they are called SpreadsheetDocument and
Sheet in OpenOffice.org Basic.

Spreadsheets

You can access the individual sheets of a spreadsheet document through the Sheets
list.

The following examples show you how to access a sheet either through its number or
its name.

Example 1: access by means of the number (numbering begins with 0)

Dim Doc As Object
Dim Sheet As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets (0)

Example 2: access by means of the name

Dim Doc As Object
Dim Sheet As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets.getByName("Sheet 1")

In the first example, the sheet is accessed by its number (counting begins at 0). In the
second example, the sheet is accessed by its name and the getByName method.

The Sheet object that is obtained by the getByName method supports the
com.sun.star.sheet.Spreadsheet service. In addition to providing several interfaces
for editing the content, this service provides the following properties:

 IsVisible (Boolean)

 the spreadsheet is visible.

 PageStyle (String)

 name of the page template for the spreadsheet.

136 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/Spreadsheet.html

Spreadsheets

Creating, Deleting and Renaming Sheets

The Sheets list for a spreadsheet document is also used to create, delete, and
rename individual sheets. The following example uses the hasByName method to
check if a sheet called MySheet exists. If it does, the method determines a
corresponding object reference by using the getByName method and then saves the
reference in a variable in Sheet. If the corresponding sheet does not exist, it is
created by the createInstance call and inserted in the spreadsheet document by the
insertByName method.

Dim Doc As Object
Dim Sheet As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

If Doc.Sheets.hasByName("MySheet") Then
 Sheet = Doc.Sheets.getByName("MySheet")
Else
 Sheet = Doc.createInstance("com.sun.star.sheet.Spreadsheet")
 Doc.Sheets.insertByName("MySheet", Sheet)
End If

The getByName and insertByName methods are from the
com.sun.star.container.XNameContainer interface as described in Introduction to the
API.

Rows and Columns

Each sheet contains a list of its rows and columns. These are available through the
Rows and Columns properties of the spreadsheet object and support the
com.sun.star.table.TableColumns and/or com.sun.star.table.TableRows services.

The following example creates two objects that reference the first row and the first
column of a sheet and stores the references in the FirstCol and FirstRow object
variables.

Dim Doc As Object
Dim Sheet As Object
Dim FirstRow As Object
Dim FirstCol As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

FirstCol = Sheet.Columns(0)
FirstRow = Sheet.Rows(0)

Chapter 7 · Spreadsheet Documents 137

http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableRows.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumns.html
http://api.openoffice.org/docs/common/ref/com/sun/star/container/XNameContainer.html

Rows and Columns

The column objects support the com.sun.star.table.TableColumn service that has the
following properties:

 Width (long)

 width of a column in hundredths of a millimeter.

 OptimalWidth (Boolean)

 sets a column to its optimum width.

 IsVisible (Boolean)

 displays a column.

 IsStartOfNewPage (Boolean)

 when printing, creates a page break before a column.

The width of a column is only optimized when the OptimalWidth property is set to
True. If the width of an individual cell is changed, the width of the column that
contains the cell is not changed. In terms of functionality, OptimalWidth is more of a
method than a property.

The row objects are based on the com.sun.star.table.RowColumn service that has
the following properties:

 Height (long)

 height of the row in 100ths of a millimeter.

 OptimalHeight (Boolean)

 sets the row to its optimum height.

 IsVisible (Boolean)

 displays the row.

 IsStartOfNewPage (Boolean)

 when printing, creates a page break before the row.

If the OptimalHeight property of a row is set to the True, the row height changes
automatically when the height of a cell in the row is changed. Automatic optimization
continues until the row is assigned an absolute height through the Height property.

The following example activates the automatic height optimization for the first five
rows in the sheet and makes the second column invisible.

Dim Doc As Object
Dim Sheet As Object
Dim Row As Object
Dim Col As Object
Dim I As Integer

138 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/table/RowColumn.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/TableColumn.html

Rows and Columns

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

For I = 0 To 4
 Row = Sheet.Rows(I)
 Row.OptimalHeight = True
Next I

Col = Sheet.Columns(1)
Col.IsVisible = False

Note – The Rows and Columns lists can be accessed through an index in
OpenOffice.org Basic. Unlike in VBA, the first column has the index 0 and not the
index 1.

Inserting and Deleting Rows and Columns

The Rows and Columns objects of a sheet can access existing rows and columns as
well as insert and delete them.

Dim Doc As Object
Dim Sheet As Object
Dim NewColumn As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

Sheet.Columns.insertByIndex(3, 1)
Sheet.Columns.removeByIndex(5, 1)

This example uses the insertByIndex method to insert a new column into the fourth
column position in the sheet (index 3 - numbering starts at 0). The second parameter
specifies the number of columns to be inserted (in this example: one).

The removeByIndex method deletes the sixth column (index 5). Again, the second
parameter specifies the number of columns that you want to delete.

The methods for inserting and deleting rows use the Rows object function in the same
way as the methods shown for editing columns using the Columns object.

Cells and Ranges

A spreadsheet consists of a two-dimensional list containing cells. Each cell is defined

Chapter 7 · Spreadsheet Documents 139

Cells and Ranges

by its X and Y-position with respect to the top left cell which has the position (0,0).

Addressing and Editing Individual Cells

The following example creates an object that references the top left cell and inserts a
text in the cell:

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)
Cell.String = "Test"

Note – StarDesktop.CurrentComponent returns the current component. If you are
working in the BASIC IDE when you run the macro, then the BASIC IDE is returned.
A RunTime error is generated because the BASIC IDE does not have a spreadsheet
component.
Save the example code and run the macro from a spreadsheet document. See
StarDesktop for more information.

In addition to numerical coordinates, each cell in a sheet has a name, for example,
the top left cell (0,0) of a spreadsheet is called A1. The letter A stands for the column
and the number 1 for the row. It is important that the name and position of a cell are
not confused because row counting for names begins with 1 but the counting for
position begins with 0.

In OpenOffice.org, a table cell can be empty or contain text, numbers, or formulas.
The cell type is not determined by the content that is saved in the cell, but rather the
object property which was used for its entry. Numbers can be inserted and called up
with the Value property, text with the String property, and formulas with the Formula
property.

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)
Cell.Value = 100

Cell = Sheet.getCellByPosition(0, 1)
Cell.String = "Test"

140 OpenOffice.org 3.1 BASIC Guide · April 2009

Cells and Ranges

Cell = Sheet.getCellByPosition(0, 2)
Cell.Formula = "=A1"

The example inserts one number, one text, and one formula in the fields A1 to A3.

Note – The Value, String, and Formula properties supersede the PutCell method
for setting the values of a table cell.

OpenOffice.org treats cell content that is entered using the String property as text,
even if the content is a number. Numbers are left-aligned in the cell instead of right-
aligned. You should also note the difference between text and numbers when you use
formulas:

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

Cell = Sheet.getCellByPosition(0, 0)
Cell.Value = 100

Cell = Sheet.getCellByPosition(0, 1)
Cell.String = 1000

Cell = Sheet.getCellByPosition(0, 2)
Cell.Formula = "=A1+A2"

MsgBox Cell.Value

Although cell A1 contains the value 100 and cell A2 contains the value 1000, the
A1+A2 formula returns the value 100. This is because the contents of cell A2 were
entered as a string and not as a number.

To check if the contents of a cell contains a number or a string, use the Type property:

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Select Case Cell.Type
Case com.sun.star.table.CellContentType.EMPTY
 MsgBox "Content: Empty"
Case com.sun.star.table.CellContentType.VALUE
 MsgBox "Content: Value"
Case com.sun.star.table.CellContentType.TEXT
 MsgBox "Content: Text"

Chapter 7 · Spreadsheet Documents 141

Cells and Ranges

Case com.sun.star.table.CellContentType.FORMULA
 MsgBox "Content: Formula"
End Select

The Cell.Type property returns a value for the com.sun.star.table.CellContentType
enumeration which identifies the contents type of a cell. The possible values are:

 EMPTY

 no value

 VALUE

 number

 TEXT

 strings

 FORMULA

 formula

Inserting, Deleting, Copying and Moving Cells

In addition to directly modifying cell content, OpenOffice.org Calc also provides an
interface that allows you to insert, delete, copy, or merge cells. The interface
(com.sun.star.sheet.XRangeMovement) is available through the spreadsheet object
and provides four methods for modifying cell content.

The insertCell method is used to insert cells into a sheet.

Dim Doc As Object
Dim Sheet As Object
Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0
CellRangeAddress.StartColumn = 1
CellRangeAddress.StartRow = 1
CellRangeAddress.EndColumn = 2
CellRangeAddress.EndRow = 2

Sheet.insertCells(CellRangeAddress, com.sun.star.sheet.CellInsertMode.DOWN)

This example inserts a cells range that is two rows by two columns in size into the
second column and row (each bear the number 1) of the first sheet (number 0) in the
spreadsheet. Any existing values in the specified cell range are moved below the
range.

142 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/XRangeMovement.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellContentType.html

Cells and Ranges

To define the cell range that you want to insert, use the
com.sun.star.table.CellRangeAddress structure. The following values are included in
this structure:

 Sheet (short)

 number of the sheet (numbering begins with 0).

 StartColumn (long)

 first column in the cell range (numbering begins with 0).

 StartRow (long)

 first row in the cell range (numbering begins with 0).

 EndColumn (long)

 final column in the cell range (numbering begins with 0).

 EndRow (long)

 final row in the cell range (numbering begins with 0).

The completed CellRangeAddress structure must be passed as the first parameter to
the insertCells method. The second parameter of insertCells contains a value of
the com.sun.star.sheet.CellInsertMode enumeration and defines what is to be done
with the values that are located in front of the insert position. The CellInsertMode
enumeration recognizes the following values:

 NONE

 the current values remain in their present position.

 DOWN

 the cells at and under the insert position are moved downwards.

 RIGHT

 the cells at and to the right of the insert position are moved to the right.

 ROWS

 the rows after the insert position are moved downwards.

 COLUMNS

 the columns after the insert position are moved to the right.

The removeRange method is the counterpart to the insertCells method. This method
deletes the range that is defined in the CellRangeAddress structure from the sheet.

Dim Doc As Object
Dim Sheet As Object
Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress

Chapter 7 · Spreadsheet Documents 143

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellInsertMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellRangeAddress.html

Cells and Ranges

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0
CellRangeAddress.StartColumn = 1
CellRangeAddress.StartRow = 1
CellRangeAddress.EndColumn = 2
CellRangeAddress.EndRow = 2

Sheet.removeRange(CellRangeAddress, com.sun.star.sheet.CellDeleteMode.UP)

This example removes the B2:C3 cell range from the sheet and then shifts the
underlying cells up by two rows. The type of removal is defined by one of the
following values from the com.sun.star.sheet.CellDeleteMode enumeration:

 NONE

 the current values remain in their current position.

 UP

 the cells at and below the insert position are moved upwards.

 LEFT

 the cells at and to the right of the insert position are moved to the left.

 ROWS

 the rows after the insert position are moved upwards.

 COLUMNS

 the columns after the insert position are moved to the left.

The XRangeMovement interface provides two additional methods for moving
(moveRange) or copying (copyRange) cell ranges. The following example moves the
B2:C3 range so that the range starts at position A6:

Dim Doc As Object
Dim Sheet As Object
Dim CellRangeAddress As New com.sun.star.table.CellRangeAddress
Dim CellAddress As New com.sun.star.table.CellAddress

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

CellRangeAddress.Sheet = 0
CellRangeAddress.StartColumn = 1
CellRangeAddress.StartRow = 1
CellRangeAddress.EndColumn = 2
CellRangeAddress.EndRow = 2

CellAddress.Sheet = 0
CellAddress.Column = 0
CellAddress.Row = 5

144 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellDeleteMode.html

Cells and Ranges

Sheet.moveRange(CellAddress, CellRangeAddress)

In addition to the CellRangeAdress structure, the moveRange method expects a
com.sun.star.table.CellAddress structure to define the origin of the move's target
region. The CellAddress method provides the following values:

 Sheet (short)

 number of the spreadsheet (numbering begins with 0).

 Column (long)

 number of the addressed column (numbering begins with 0).

 Row (long)

 number of the addressed row (numbering begins with 0).

The cell contents in the target range are always overwritten by the moveRange
method. Unlike in the InsertCells method , a parameter for performing automatic
moves is not provided in the removeRange method.

The copyRange method functions in the same way as the moveRange method, except
that copyRange inserts a copy of the cell range instead of moving it.

Note – In terms of their function, the OpenOffice.org Basic insertCell,
removeRange, and copyRange methods are comparable with the VBA Range.Insert,
Range.Delete ,and Range.Copy methods. Whereas in VBA, the methods are applied
to the corresponding Range object, in OpenOffice.org Basic they are applied to the
associated Sheet object.

Formatting Spreadsheet Documents

A spreadsheet document provides properties and methods for formatting cells and
pages.

Cell Properties

There are numerous options for formatting cells, such as specifying the font type and
size for text. Each cell supports the com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties services, the main properties of which are

Chapter 7 · Spreadsheet Documents 145

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellAddress.html

Formatting Spreadsheet Documents

described in Text Documents. Special cell formatting is handled by the
com.sun.star.table.CellProperties service. The main properties of this service are
described in the following sections.

You can apply all of the named properties to individual cells and to cell ranges.

Note – The CellProperties object in the OpenOffice.org API is comparable with the
Interior object from VBA which also defines cell-specific properties.

Background Color and Shadows

The com.sun.star.table.CellProperties service provides the following properties for
defining background colors and shadows:

 CellBackColor (Long)

 background color of the table cell

 IsCellBackgroundTransparent (Boolean)

 sets the background color to transparent

 ShadowFormat (struct)

 specifies the shadow for cells (structure in accordance with
com.sun.star.table.ShadowFormat)

The com.sun.star.table.ShadowFormat structure and the detailed specifications for
cell shadows have the following structure:

 Location (enum)

 position of shadow (value from the com.sun.star.table.ShadowLocation
structure).

 ShadowWidth (Short)

 size of shadow in hundredths of a millimeter

 IsTransparent (Boolean)

 sets the shadow to transparent

 Color (Long)

 color of shadow

The following example writes the number 1000 to the B2 cell, changes the
background color to red using the CellBackColor property, and then creates a light

146 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html
http://wiki.services.openoffice.org/w/index.php?oldid=96872

Formatting Spreadsheet Documents

gray shadow for the cell that is moved 1 mm to the left and down.

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object
Dim ShadowFormat As New com.sun.star.table.ShadowFormat

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Cell.CellBackColor = RGB(255, 0, 0)

ShadowFormat.Location = com.sun.star.table.ShadowLocation.BOTTOM_RIGHT
ShadowFormat.ShadowWidth = 100
ShadowFormat.Color = RGB(160, 160, 160)

Cell.ShadowFormat = ShadowFormat

Justification

OpenOffice.org provides various functions that allow you to change the justification of
a text in a table cell.

The following properties define the horizontal and vertical justification of a text:

 HoriJustify (enum)

 horizontal justification of the text (value from com.sun.star.table.CellHoriJustify)

 VertJustify (enum)

 vertical justification of the text (value from com.sun.star.table.CellVertJustify)

 Orientation (enum)

 orientation of text (value in accordance with com.sun.star.table.CellOrientation)

 IsTextWrapped (Boolean)

 permits automatic line breaks within the cell

 RotateAngle (Long)

 angle of rotation of text in hundredths of a degree

The following example shows how you can "stack" the contents of a cell so that the
individual characters are printed one under another in the top left corner of the cell.
The characters are not rotated.

Dim Doc As Object
Dim Sheet As Object

Chapter 7 · Spreadsheet Documents 147

http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellOrientation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellVertJustify.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellHoriJustify.html

Formatting Spreadsheet Documents

Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 1000

Cell.HoriJustify = com.sun.star.table.CellHoriJustify.LEFT
Cell.VertJustify = com.sun.star.table.CellVertJustify.TOP
Cell.Orientation = com.sun.star.table.CellOrientation.STACKED

Number, Date and Text Format

OpenOffice.org provides a whole range of predefined date and time formats. Each of
these formats has an internal number that is used to assign the format to cells using
the NumberFormat property. OpenOffice.org provides the queryKey and addNew
methods so that you can access existing number formats as well as create your own
number formats. The methods are accessed through the following object call:

NumberFormats = Doc.NumberFormats

A format is specified using a format string that is structured in a similar way to the
format function of OpenOffice.org Basic. However there is one major difference:
whereas the command format expects English abbreviations and decimal points or
characters as thousands separators, the country-specified abbreviations must be
used for the structure of a command format for the NumberFormats object.

The following example formats the B2 cell so that numbers are displayed with three
decimal places and use commas as a thousands separator.

Dim Doc As Object
Dim Sheet As Object
Dim Cell As Object
Dim NumberFormats As Object
Dim NumberFormatString As String
Dim NumberFormatId As Long
Dim LocalSettings As New com.sun.star.lang.Locale

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
Cell = Sheet.getCellByPosition(1,1)

Cell.Value = 23400.3523565

LocalSettings.Language = "en"
LocalSettings.Country = "us"

NumberFormats = Doc.NumberFormats
NumberFormatString = "#,##0.000"

NumberFormatId = NumberFormats.queryKey(NumberFormatString, LocalSettings,

148 OpenOffice.org 3.1 BASIC Guide · April 2009

Formatting Spreadsheet Documents

True)
If NumberFormatId = -1 Then
 NumberFormatId = NumberFormats.addNew(NumberFormatString, LocalSettings)
End If

MsgBox NumberFormatId
Cell.NumberFormat = NumberFormatId

The Format Cells dialog in OpenOffice.org Calc provides an overview of the different
formatting options for cells.

Page Properties

Page properties are the formatting options that position document content on a page
as well as visual elements that are repeated page after page. These include

 Paper formats
 Page margins
 Headers and footers.

The procedure for defining page formats differs from other forms of formatting.
Whereas cell, paragraph, and character elements can be formatted directly, page
formats can also be defined and indirectly applied using page styles. For example,
headers or footers are added to the page style.

The following sections describe the main formatting options for spreadsheet pages.
Many of the styles that are described are also available for text documents. The page
properties that are valid for both types of documents are defined in the
com.sun.star.style.PageProperties service. The page properties that only apply to
spreadsheet documents are defined in the com.sun.star.sheet.TablePageStyle
service.

Note – The page properties (page margins, borders, and so on) for a Microsoft
Office document are defined by means of a PageSetup object at the Worksheet object
(Excel) or Document object (Word) level. In OpenOffice.org, these properties are
defined using a page style which in turn is linked to the associated document.

Page Background

The com.sun.star.style.PageProperties service defines the following properties of a
pages background:

Chapter 7 · Spreadsheet Documents 149

http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html

Formatting Spreadsheet Documents

 BackColor (long)

 color of background

 BackGraphicURL (String)

 URL of the background graphics that you want to use

 BackGraphicFilter (String)

 name of the filter for interpreting the background graphics

 BackGraphicLocation (Enum)

 position of the background graphics (value according to enumeration)

 BackTransparent (Boolean)

 makes the background transparent

Page Format

The page format is defined using the following properties of the
com.sun.star.style.PageProperties service:

 IsLandscape (Boolean)

 landscape format

 Width (long)

 width of page in hundredths of a millimeter

 Height (long)

 height of page in hundredths of a millimeter

 PrinterPaperTray (String)

 name of the printer paper tray that you want to use

The following example sets the page size of the "Default" page style to the DIN A5
landscape format (height 14.8 cm, width 21 cm):

Dim Doc As Object
Dim Sheet As Object
Dim StyleFamilies As Object
Dim PageStyles As Object
Dim DefPage As Object

Doc = StarDesktop.CurrentComponent
StyleFamilies = Doc.StyleFamilies
PageStyles = StyleFamilies.getByName("PageStyles")
DefPage = PageStyles.getByName("Default")

150 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html

Formatting Spreadsheet Documents

DefPage.IsLandscape = True
DefPage.Width = 21000
DefPage.Height = 14800

Page Margin, Border, and Shadow

The com.sun.star.style.PageProperties service provides the following properties for
adjusting page margins as well as borders and shadows:

 LeftMargin (long)

 width of the left hand page margin in hundredths of a millimeter

 RightMargin (long)

 width of the right hand page margin in hundredths of a millimeter

 TopMargin (long)

 width of the top page margin in hundredths of a millimeter

 BottomMargin (long)

 width of the bottom page margin in hundredths of a millimeter

 LeftBorder (struct)

 specifications for left-hand line of page border (com.sun.star.table.BorderLine
structure)

 RightBorder (struct)

 specifications for right-hand line of page border (com.sun.star.table.BorderLine
structure)

 TopBorder (struct)

 specifications for top line of page border (com.sun.star.table.BorderLine
structure)

 BottomBorder (struct)

 specifications for bottom line of page border (com.sun.star.table.BorderLine
structure)

 LeftBorderDistance (long)

 distance between left-hand page border and page content in hundredths of a
millimeter

 RightBorderDistance (long)

 distance between right-hand page border and page content in hundredths of a
millimeter

Chapter 7 · Spreadsheet Documents 151

http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html

Formatting Spreadsheet Documents

 TopBorderDistance (long)

 distance between top page border and page content in hundredths of a
millimeter

 BottomBorderDistance (long)

 distance between bottom page border and page content in hundredths of a
millimeter

 ShadowFormat (struct)

 specifications for shadow of content area of page
(com.sun.star.table.ShadowFormat structure)

The following example sets the left and right-hand borders of the "Default" page style
to 1 centimeter.

Dim Doc As Object
Dim Sheet As Object
Dim StyleFamilies As Object
Dim PageStyles As Object
Dim DefPage As Object

Doc = StarDesktop.CurrentComponent
StyleFamilies = Doc.StyleFamilies
PageStyles = StyleFamilies.getByName("PageStyles")
DefPage = PageStyles.getByName("Default")

DefPage.LeftMargin = 1000
DefPage.RightMargin = 1000

Headers and Footers

The headers and footers of a document form part of the page properties and are
defined using the com.sun.star.style.PageProperties service. The properties for
formatting headers are:

 HeaderIsOn (Boolean)

 header is activated

 HeaderLeftMargin (long)

 distance between header and left-hand page margin in hundredths of a
millimeter

 HeaderRightMargin (long)

 distance between header and right-hand page margin in hundredths of a
millimeter

152 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html

Formatting Spreadsheet Documents

 HeaderBodyDistance (long)

 distance between header and main body of document in hundredths of a
millimeter

 HeaderHeight (long)

 height of header in hundredths of a millimeter

 HeaderIsDynamicHeight (Boolean)

 height of header is automatically adapted to content

 HeaderLeftBorder (struct)

 details of the left-hand border of frame around header
(com.sun.star.table.BorderLine structure)

 HeaderRightBorder (struct)

 details of the right-hand border of frame around header
(com.sun.star.table.BorderLine structure)

 HeaderTopBorder (struct)

 details of the top line of the border around header
(com.sun.star.table.BorderLine structure)

 HeaderBottomBorder (struct)

 details of the bottom line of the border around header
(com.sun.star.table.BorderLine structure)

 HeaderLeftBorderDistance (long)

 distance between left-hand border and content of header in hundredths of a
millimeter

 HeaderRightBorderDistance (long)

 distance between right-hand border and content of header in hundredths of a
millimeter

 HeaderTopBorderDistance (long)

 distance between top border and content of header in hundredths of a
millimeter

 HeaderBottomBorderDistance (long)

 distance between bottom border and content of header in hundredths of a
millimeter

 HeaderIsShared (Boolean)

 headers on even and odd pages have the same content (refer to HeaderText ,
HeaderTextLeft, and HeaderTextRight)

Chapter 7 · Spreadsheet Documents 153

http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html

Formatting Spreadsheet Documents

 HeaderBackColor (long)

 background color of header

 HeaderBackGraphicURL (String)

 URL of the background graphics that you want to use

 HeaderBackGraphicFilter (String)

 name of the filter for interpreting the background graphics for the header

 HeaderBackGraphicLocation (Enum)

 position of the background graphics for the header (value according to
com.sun.star.style.GraphicLocation enumeration)

 HeaderBackTransparent (Boolean)

 shows the background of the header as transparent

 HeaderShadowFormat (struct)

 details of shadow of header (com.sun.star.table.ShadowFormat structure)

The properties for formatting footers are:

 FooterIsOn (Boolean)

 footer is activated

 FooterLeftMargin (long)

 distance between footer and left-hand page margin in hundredths of a
millimeter

 FooterRightMargin (long)

 distance between footer and right-hand page margin in hundredths of a
millimeter

 FooterBodyDistance (long)

 distance between footer and main body of document in hundredths of a
millimeter

 FooterHeight (long)

 height of footer in hundredths of a millimeter

 FooterIsDynamicHeight (Boolean)

 height of footer is adapted automatically to the content

 FooterLeftBorder (struct)

 details of left-hand line of border around footer (com.sun.star.table.BorderLine
structure)

154 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html

Formatting Spreadsheet Documents

 FooterRightBorder (struct)

 details of right-hand line of border around footer (com.sun.star.table.BorderLine
structure)

 FooterTopBorder (struct)

 details of top line of border around footer (com.sun.star.table.BorderLine
structure)

 FooterBottomBorder (struct)

 details of bottom line of border around footer (com.sun.star.table.BorderLine
structure)

 FooterLeftBorderDistance (long)

 distance between left-hand border and content of footer in hundredths of a
millimeter

 FooterRightBorderDistance (long)

 distance between right-hand border and content of footer in hundredths of a
millimeter

 FooterTopBorderDistance (long)

 distance between top border and content of footer in hundredths of a millimeter

 FooterBottomBorderDistance (long)

 distance between bottom border and content of footer in hundredths of a
millimeter

 FooterIsShared (Boolean)

 the footers on the even and odd pages have the same content (refer to
FooterText, FooterTextLeft, and FooterTextRight)

 FooterBackColor (long)

 background color of footer

 FooterBackGraphicURL (String)

 URL of the background graphics that you want to use

 FooterBackGraphicFilter (String)

 name of the filter for interpreting the background graphics for the footer

 FooterBackGraphicLocation (Enum)

 position of background graphics for the footer (value according to
com.sun.star.style.GraphicLocation enumeration)

Chapter 7 · Spreadsheet Documents 155

http://api.openoffice.org/docs/common/ref/com/sun/star/style/GraphicLocation.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/BorderLine.html

Formatting Spreadsheet Documents

 FooterBackTransparent (Boolean)

 shows the background of the footer as transparent

 FooterShadowFormat (struct)

 details of shadow of footer (com.sun.star.table.ShadowFormat structure)

Changing the Text of Headers and Footers

The content of headers and footers in a spreadsheet is accessed through the
following properties:

 LeftPageHeaderContent (Object)

 content of headers for even pages (com.sun.star.sheet.HeaderFooterContent
service)

 RightPageHeaderContent (Object)

 content of headers for odd pages (com.sun.star.sheet.HeaderFooterContent
service)

 LeftPageFooterContent (Object)

 content of footers for even pages (com.sun.star.sheet.HeaderFooterContent
service)

 RightPageFooterContent (Object)

 content of footers for odd pages (com.sun.star.sheet.HeaderFooterContent
service)

If you do not need to distinguish between headers or footers for odd and even pages
(the FooterIsShared property is False), then set the properties for headers and
footers on odd pages.

All the named objects return an object that supports the
com.sun.star.sheet.HeaderFooterContent service. By means of the (non-genuine)
properties LeftText, CenterText, and RightText, this service provides three text
elements for the headers and footers of OpenOffice.org Calc.

The following example writes the "Just a Test." value in the left-hand text field of the
header from the "Default" template.

Dim Doc As Object
Dim Sheet As Object
Dim StyleFamilies As Object
Dim PageStyles As Object
Dim DefPage As Object
Dim HText As Object

156 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/HeaderFooterContent.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/ShadowFormat.html

Formatting Spreadsheet Documents

Dim HContent As Object
Doc = StarDesktop.CurrentComponent
StyleFamilies = Doc.StyleFamilies
PageStyles = StyleFamilies.getByName("PageStyles")
DefPage = PageStyles.getByName("Default")

DefPage.HeaderIsOn = True
HContent = DefPage.RightPageHeaderContent
HText = HContent.LeftText
HText.String = "Just a Test."
DefPage.RightPageHeaderContent = HContent

Note the last line in the example: Once the text is changed, the TextContent object
must be assigned to the header again so that the change is effective.

Another mechanism for changing the text of headers and footers is available for text
documents (OpenOffice.org Writer) because these consist of a single block of text.
The following properties are defined in the com.sun.star.style.PageProperties service:

 HeaderText (Object)

 text object with content of the header (com.sun.star.text.XText service)

 HeaderTextLeft (Object)

 text object with content of headers on left-hand pages (com.sun.star.text.XText
service)

 HeaderTextRight (Object)

 text object with content of headers on right-hand pages (com.sun.star.text.XText
service)

 FooterText (Object)

 text object with content of the footer (com.sun.star.text.XText service)

 FooterTextLeft (Object)

 text object with content of footers on left-hand pages (com.sun.star.text.XText
service)

 FooterTextRight (Object)

 text object with content of footers on right-hand pages (com.sun.star.text.XText
service)

The following example creates a header in the "Default" page style for text
documents and adds the text "Just a Test" to the header.

Dim Doc As Object
Dim Sheet As Object
Dim StyleFamilies As Object
Dim PageStyles As Object
Dim DefPage As Object
Dim HText As Object

Chapter 7 · Spreadsheet Documents 157

http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/text/XText.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/PageProperties.html

Formatting Spreadsheet Documents

Doc = StarDesktop.CurrentComponent
StyleFamilies = Doc.StyleFamilies
PageStyles = StyleFamilies.getByName("PageStyles")
DefPage = PageStyles.getByName("Default")

DefPage.HeaderIsOn = True
HText = DefPage.HeaderText

HText.String = "Just a Test."

In this instance, access is provided directly through the HeaderText property of the
page style rather than the HeaderFooterContent object.

Centering (Spreadsheets Only)

The com.sun.star.sheet.TablePageStyle service is only used in OpenOffice.org Calc
page styles and allows cell ranges that you want to printed to be centered on the
page. This service provides the following properties:

 CenterHorizontally (Boolean)

 table content is centered horizontally

 CenterVertically (Boolean)

 table content is centered vertically

Definition of Elements to be Printed (Spreadsheets
Only)

When you format sheets, you can define whether page elements are visible. For this
purpose, the com.sun.star.sheet.TablePageStyle service provides the following
properties:

 PrintAnnotations (Boolean)

 prints cell comments

 PrintGrid (Boolean)

 prints the cell gridlines

 PrintHeaders (Boolean)

 prints the row and column headings

158 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/TablePageStyle.html

Formatting Spreadsheet Documents

 PrintCharts (Boolean)

 prints charts contained in a sheet

 PrintObjects (Boolean)

 prints embedded objects

 PrintDrawing (Boolean)

 prints draw objects

 PrintDownFirst (Boolean)

 if the contents of a sheet extend across several pages, they are first printed in
vertically descending order, and then down the right-hand side.

 PrintFormulas (Boolean)

 prints the formulas instead of the calculated values

 PrintZeroValues (Boolean)

 prints the zero values

Editing Spreadsheet Documents

Whereas the previous section described the main structure of spreadsheet
documents, this section describes the services that allow you to easily access
individual cells or cell ranges.

Cell Ranges

In addition to an object for individual cells (com.sun.star.table.Cell service),
OpenOffice.org also provides objects that represent cell ranges. Such CellRange
objects are created using the getCellRangeByName call of the spreadsheet object:

Dim Doc As Object
Dim Sheet As Object
Dim CellRange As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets.getByName("Sheet 1")
CellRange = Sheet.getCellRangeByName("A1:C15")

A colon (:) is used to specify a cell range in a spreadsheet document. For example,

Chapter 7 · Spreadsheet Documents 159

http://api.openoffice.org/docs/common/ref/com/sun/star/table/Cell.html

Cell Ranges

A1:C15 represents all the cells in rows 1 to 15 in columns A, B, and C.

The location of individual cells in a cell range can be determined using the
getCellByPosition method, where the coordinates of the top left cell in the cell range
is (0, 0). The following example uses this method to create an object of cell C3.

Dim Doc As Object
Dim Sheet As Object
Dim CellRange As Object
Dim Cell As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets.getByName("Sheet 1")
CellRange = Sheet.getCellRangeByName("B2:D4")
Cell = CellRange.GetCellByPosition(1, 1)

Formatting Cell Ranges

Just like individual cells, you can apply formatting to cell ranges using the
com.sun.star.table.CellProperties service. For more information and examples of this
service, see Formatting Spreadsheet Documents.

Computing With Cell Ranges

You can use the computeFunction method to perform mathematical operations on cell
ranges. The computeFunction expects a constant as the parameter that describes the
mathematical function that you want to use. The associated constants are defined in
the com.sun.star.sheet.GeneralFunction enumeration. The following values are
available:

 SUM

 sum of all numerical values

 COUNT

 total number of all values (including non-numerical values)

 COUNTNUMS

 total number of all numerical values

 AVERAGE

 average of all numerical values

 MAX

 largest numerical value

160 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/GeneralFunction.html
http://api.openoffice.org/docs/common/ref/com/sun/star/table/CellProperties.html

Cell Ranges

 MIN

 smallest numerical value

 PRODUCT

 product of all numerical values

 STDEV

 standard deviation

 VAR

 variance

 STDEVP

 standard deviation based on the total population

 VARP

 variance based on the total population

The following example computes the average value of the A1:C3 range and prints the
result in a message box:

Dim Doc As Object
Dim Sheet As Object
Dim CellRange As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets.getByName("Sheet 1")
CellRange = Sheet.getCellRangeByName("A1:C3")

MsgBox CellRange.computeFunction(com.sun.star.sheet.GeneralFunction.AVERAGE)

Deleting Cell Contents

The clearContents method simplifies the process of deleting cell contents and cell
ranges in that it deletes one specific type of content from a cell range.

The following example removes all the strings and the direct formatting information
from the B2:C3 range.

Dim Doc As Object
Dim Sheet As Object
Dim CellRange As Object
Dim Flags As Long

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)
CellRange = Sheet.getCellRangeByName("B2:C3")

Chapter 7 · Spreadsheet Documents 161

Cell Ranges

Flags = com.sun.star.sheet.CellFlags.STRING + _
 com.sun.star.sheet.CellFlags.HARDATTR

CellRange.clearContents(Flags)

The flags specified in clearContents come from the com.sun.star.sheet.CellFlags
constants list. This list provides the following elements:

 VALUE

 numerical values that are not formatted as date or time

 DATETIME

 numerical values that are formatted as date or time

 STRING

 strings

 ANNOTATION

 comments that are linked to cells

 FORMULA

 formulas

 HARDATTR

 direct formatting of cells

 STYLES

 indirect formatting

 OBJECTS

 drawing objects that are connected to cells

 EDITATTR

 character formatting that only applies to parts of the cells

You can also add the constants together to delete different information using a call
from clearContents.

Searching and Replacing Cell Contents

Spreadsheet documents, like text documents, provide a function for searching and
replacing.

162 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/sheet/CellFlags.html

Searching and Replacing Cell Contents

The descriptor objects for searching and replacing in spreadsheet documents are not
created directly through the document object, but rather through the Sheets list. The
following is an example of a search and replace process:

Dim Doc As Object
Dim Sheet As Object
Dim ReplaceDescriptor As Object
Dim I As Integer

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets(0)

ReplaceDescriptor = Sheet.createReplaceDescriptor()
ReplaceDescriptor.SearchString = "is"
ReplaceDescriptor.ReplaceString = "was"
For I = 0 to Doc.Sheets.Count - 1
 Sheet = Doc.Sheets(I)
 Sheet.ReplaceAll(ReplaceDescriptor)
Next I

This example uses the first page of the document to create a ReplaceDescriptor and
then applies this to all pages in a loop.

Chapter 7 · Spreadsheet Documents 163

8   C H A P T E R 8

8 Drawings and Presentations

This chapter provides an introduction to the macro-controlled creation and editing of
drawings and presentations.

The first section describes the structure of drawings, including the basic elements
that contain drawings. The second section addresses more complex editing
functions, such as grouping, rotating, and scaling objects. The third section deals with
presentations.

Information about creating, opening, and saving drawings can be found in Working
With Documents.

The Structure of Drawings

OpenOffice.org does not limit the number of pages in a drawing document. You can
design each page separately. There is also no limit to the number of drawing
elements that you can add to a page.

165

http://wiki.services.openoffice.org/w/index.php?oldid=96869
http://wiki.services.openoffice.org/w/index.php?oldid=96869

Pages

Pages

The pages of a drawing document are available through the DrawPages list. You can
access individual pages either through their number or their name. If a document has
one page and this is called Slide 1, then the following examples are identical.

Example 1:

Dim Doc As Object
Dim Page As Object

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

Example 2:

Dim Doc As Object
Dim Page As Object

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages.getByName("Slide 1")

In Example 1, the page is addressed by its number (counting begins at 0). In the
second example, the page is accessed by its name and the getByName method.

Dim sUrl As String, sFilter As String
Dim sOptions As String
Dim oSheets As Object, oSheet As Object

 oSheets = oDocument.Sheets

 If oSheets.hasByName("Link") Then
 oSheet = oSheets.getByName("Link")
 Else
 oSheet = oDocument.createInstance("com.sun.star.sheet.Spreadsheet")
 oSheets.insertByName("Link", oSheet)
 oSheet.IsVisible = False
 End If

The preceding call returns a page object that supports the
com.sun.star.drawing.DrawPage service. The service recognizes the following
properties:

 BorderLeft (Long)

 left-hand border in hundredths of a millimeter

 BorderRight (Long)

 right-hand border in hundredths of a millimeter

 BorderTop (Long)

 top border in hundredths of a millimeter

166 OpenOffice.org 3.1 BASIC Guide · April 2009

Pages

 BorderBottom (Long)

 bottom border in hundredths of a millimeter

 Width (Long)

 page width in hundredths of a millimeter

 Height (Long)

 page height in hundredths of a millimeter

 Number (Short)

 number of pages (numbering begins at 1), read-only

 Orientation (Enum)

 page orientation (in accordance with com.sun.star.view.PaperOrientation
enumeration)

If these settings are changed, then all of the pages in the document are affected.

The following example sets the page size of a drawing document which has just been
opened to 20 x 20 centimeters with a page margin of 0.5 centimeters:

Dim Doc As Object
Dim Page As Object

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

Page.BorderLeft = 500
Page.BorderRight = 500
Page.BorderTop = 500
Page.BorderBottom = 500

Page.Width = 20000
Page.Height = 20000

Elementary Properties of Drawing
Objects

Drawing objects include shapes (rectangles, circles, and so on), lines, and text
objects. All of these share a number of common features and support the
com.sun.star.drawing.Shape service. This service defines the Size and Position
properties of a drawing object.

OpenOffice.org Basic also offers several other services through which you can

Chapter 8 · Drawings and Presentations 167

Elementary Properties of Drawing Objects

modify such properties, as formatting or apply fills. The formatting options that are
available depend on the type of drawing object.

The following example creates and inserts a rectangle in a drawing document:

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

Page.add(RectangleShape)

This example uses the StarDesktop.CurrentComponent call to determine which
document is open. The document object determined this way returns the first page of
the drawing through the drawPages(0) call.

The Point and Size structures with the point of origin (left hand corner) and the size
of the drawing object are then initialized. The lengths are specified in hundredths of a
millimeter.

The program code then uses the Doc.createInstance call to create the rectangle
drawing object as specified by the com.sun.star.drawing.RectangleShape service. At
the end, the drawing object is assigned to a page using a Page.add call.

Fill Properties

This section describes four services and in each instance the sample program code
uses a rectangle shape element that combines several types of formatting. Fill
properties are combined in the com.sun.star.drawing.FillProperties service.

OpenOffice.org recognizes four main types of formatting for a fill area. The simplest
variant is a single-color fill. The options for defining color gradients and hatches let
you create other colors into play. The fourth variant is the option of projecting existing
graphics into the fill area.

168 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html

Elementary Properties of Drawing Objects

The fill mode of a drawing object is defined using the FillStyle property. The
permissible values are defined in com.sun.star.drawing.FillStyle.

Single Color Fills

The main property for single-color fills is:

 FillColor (Long)

 fill color of area

To use the fill mode, you must the FillStyle property to the SOLID fill mode.

The following example creates a rectangle shape and fills it with red (RGB value 255,
0, 0):

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.SOLID
RectangleShape.FillColor = RGB(255,0,0)

Page.add(RectangleShape)

Color Gradient

If you set the FillStyle property to GRADIENT, you can apply a color gradient to any
fill area of a OpenOffice.org document.

If you want to apply a predefined color gradient, you can assign the associated name
of the FillTransparenceGradientName property. To define your own color gradient,
you need to complete a com.sun.star.awt.Gradient structure to assign the
FillGradient property. This property provides the following options:

Chapter 8 · Drawings and Presentations 169

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillStyle.html

Elementary Properties of Drawing Objects

 Style (Enum)

 type of gradient, for example, linear or radial (default values in accordance with
com.sun.star.awt.GradientStyle)

 StartColor (Long)

 start color of color gradient

 EndColor (Long)

 end color of color gradient

 Angle (Short)

 angle of color gradient in tenths of a degree

 XOffset (Short)

 X-coordinate at which the color gradient starts, specified in hundredths of a
millimeter

 YOffset (Short)

 Y-coordinate at which the color gradient begins, specified in hundredths of a
millimeter

 StartIntensity (Short)

 intensity of StartColor as a percentage (in OpenOffice.org Basic, you can also
specify values higher than 100 percent)

 EndIntensity (Short)

 intensity of EndColor as a percentage (in OpenOffice.org Basic, you can also
specify values higher than 100 percent)

 StepCount (Short)

 number of color graduations which OpenOffice.org is to calculate for the
gradients

The following example demonstrates the use of color gradients with the aid of the
com.sun.star.awt.Gradient structure:

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size
Dim Gradient As New com.sun.star.awt.Gradient

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

170 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Gradient.html
http://api.openoffice.org/docs/common/ref/com/sun/star/awt/GradientStyle.html

Elementary Properties of Drawing Objects

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point
Gradient.Style = com.sun.star.awt.GradientStyle.LINEAR
Gradient.StartColor = RGB(255,0,0)
Gradient.EndColor = RGB(0,255,0)
Gradient.StartIntensity = 150
Gradient.EndIntensity = 150
Gradient.Angle = 450
Gradient.StepCount = 100

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.GRADIENT
RectangleShape.FillGradient = Gradient

Page.add(RectangleShape)

This example creates a linear color gradient (Style = LINEAR). The gradient starts
with red (StartColor) in the top left corner, and extends at a 45 degree angle (Angle)
to green (EndColor) in the bottom right corner. The color intensity of the start and end
colors is 150 percent (StartIntensity and EndIntensity) which results in the colors
seeming brighter than the values specified in the StartColor and EndColor
properties. The color gradient is depicted using a hundred graduated individual colors
(StepCount).

Hatches

To create a hatch fill, the FillStyle property must be set to HATCH. The program code
for defining the hatch is very similar to the code for color gradients. Again an auxiliary
structure, in this case com.sun.star.drawing.Hatch, is used to define the appearance
of hatches. The structure for hatches has the following properties:

 Style (Enum)

 type of hatch: simple, squared, or squared with diagonals (default values in
accordance with com.sun.star.awt.HatchStyle)

 Color (Long)

 color of lines

 Distance (Long)

 distance between lines in hundredths of a millimeter

 Angle (Short)

 angle of hatch in tenths of a degree

Chapter 8 · Drawings and Presentations 171

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Hatch.html

Elementary Properties of Drawing Objects

The following example demonstrates the use of a hatch structure:

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size
Dim Hatch As New com.sun.star.drawing.Hatch

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.HATCH

Hatch.Style = com.sun.star.drawing.HatchStyle.SINGLE
Hatch.Color = RGB(64,64,64)
Hatch.Distance = 20
Hatch.Angle = 450

RectangleShape.FillHatch = Hatch

Page.add(RectangleShape)

This code creates a simple hatch structure (HatchStyle = SINGLE) whose lines are
rotated 45 degrees (Angle). The lines are dark gray (Color) and are spaced is 0.2
millimeters (Distance) apart.

Bitmaps

To use bitmap projection as a fill, you must set the FillStyle property to BITMAP. If
the bitmap is already available in OpenOffice.org, you just need to specify its name in
the FillBitMapName property and its display style (simple, tiled, or elongated) in the
FillBitmapMode property (default values in accordance with
com.sun.star.drawing.BitmapMode).

If you want to use an external bitmap file, you can specify its URL in the
FillBitmapURL property.

The following example creates a rectangle and tiles the Sky bitmap that is available in
OpenOffice.org to fill the area of the rectangle:

Dim Doc As Object

172 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/BitmapMode.html

Elementary Properties of Drawing Objects

Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.BITMAP
RectangleShape.FillBitmapName = "Sky"
RectangleShape.FillBitmapMode = com.sun.star.drawing.BitmapMode.REPEAT

Page.add(RectangleShape)

Transparency

You can adjust the transparency of any fill that you apply. The simplest way to change
the transparency of a drawing element is to use the FillTransparence property.

The following example creates a red rectangle with a transparency of 50 percent.

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.FillStyle = com.sun.star.drawing.FillStyle.SOLID
RectangleShape.FillTransparence = 50
RectangleShape.FillColor = RGB(255,0,0)

Page.add(RectangleShape)

Chapter 8 · Drawings and Presentations 173

Elementary Properties of Drawing Objects

To make the fill transparent, set the FillTransparence property to 100.

In addition to the FillTransparence property, the com.sun.star.drawing.FillProperties
service also provides the FillTransparenceGradient property. This is used to define
a gradient that specifies the transparency of a fill area.

Line Properties

All drawing objects that can have a border line support the
com.sun.star.drawing.LineStyle service. Some of the properties that this service
provides are:

 LineStyle (Enum)

 line type (default values in accordance with com.sun.star.drawing.LineStyle)

 LineColor (Long)

 line color

 LineTransparence (Short)

 line transparency

 LineWidth (Long)

 line thickness in hundredths of a millimeter

 LineJoint (Enum)

 transitions to connection points (default values in accordance with
com.sun.star.drawing.LineJoint)

The following example creates a rectangle with a solid border (LineStyle = SOLID)
that is 5 millimeters thick (LineWidth) and 50 percent transparent. The right and left-
hand edges of the line extend to their points of intersect with each other (LineJoint =
MITER) to form a right-angle.

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

174 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineJoint.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineStyle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html

Elementary Properties of Drawing Objects

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.LineColor = RGB(128,128,128)
RectangleShape.LineTransparence = 50
RectangleShape.LineWidth = 500
RectangleShape.LineJoint = com.sun.star.drawing.LineJoint.MITER

RectangleShape.LineStyle = com.sun.star.drawing.LineStyle.SOLID

Page.add(RectangleShape)

In addition to the listed properties, the com.sun.star.drawing.LineStyle service
provides options for drawing dotted and dashed lines. For more information, see the
OpenOffice.org API reference.

Text Properties (Drawing Objects)

The com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties services can format text in drawing objects.
These services relate to individual characters and paragraphs and are described in
detail in Text Documents.

The following example inserts text in a rectangle and formats the font
com.sun.star.style.CharacterProperties service.

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size
Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000
Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

Page.add(RectangleShape)

RectangleShape.String = "This is a test"
RectangleShape.CharWeight = com.sun.star.awt.FontWeight.BOLD
RectangleShape.CharFontName = "Arial"

This code uses the String-property of the rectangle to insert the text and the
CharWeight and CharFontName properties from the
com.sun.star.style.CharacterProperties service to format the text font.

Chapter 8 · Drawings and Presentations 175

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://wiki.services.openoffice.org/w/index.php?oldid=96872
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineStyle.html

Elementary Properties of Drawing Objects

The text can only be inserted after the drawing object has been added to the drawing
page. You can also use the com.sun.star.drawing.Text service to position and format
text in drawing object. The following are some of the important properties of this
service:

 TextAutoGrowHeight (Boolean)

 adapts the height of the drawing element to the text it contains

 TextAutoGrowWidth (Boolean)

 adapts the width of the drawing element to the text it contains

 TextHorizontalAdjust (Enum)

 horizontal position of text within the drawing element (default values in
accordance with com.sun.star.drawing.TextHorizontalAdjust)

 TextVerticalAdjust (Enum)

 vertical position of text within the drawing element (default values in accordance
with com.sun.star.drawing.TextVerticalAdjust)

 TextLeftDistance (Long)

 left-hand distance between drawing element and text in hundredths of a
millimeter

 TextRightDistance (Long)

 right-hand distance between drawing element and text in hundredths of a
millimeter

 TextUpperDistance (Long)

 upper distance between drawing element and text in hundredths of a millimeter

 TextLowerDistance (Long)

 lower distance between drawing element and text in hundredths of a millimeter

The following example demonstrates use of the named properties.

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

176 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextVerticalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/TextHorizontalAdjust.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html

Elementary Properties of Drawing Objects

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

Page.add(RectangleShape)

RectangleShape.String = "This is a test" ' May only take place after
Page.add!

RectangleShape.TextVerticalAdjust =
com.sun.star.drawing.TextVerticalAdjust.TOP
RectangleShape.TextHorizontalAdjust =
com.sun.star.drawing.TextHorizontalAdjust.LEFT

RectangleShape.TextLeftDistance = 300
RectangleShape.TextRightDistance = 300
RectangleShape.TextUpperDistance = 300
RectangleShape.TextLowerDistance = 300

This code inserts a drawing element in a page and then adds text to the top left
corner of the drawing object using the TextVerticalAdjust and
TextHorizontalAdjust properties. The minimum distance between the text edge of
the drawing object is set to three millimeters.

Shadow Properties

You can add a shadow to most drawing objects with the
com.sun.star.drawing.ShadowProperties service. The properties of this service are:

 Shadow (Boolean)

 activates the shadow

 ShadowColor (Long)

 shadow color

 ShadowTransparence (Short)

 transparency of the shadow

 ShadowXDistance (Long)

 vertical distance of the shadow from the drawing object in hundredths of a
millimeter

 ShadowYDistance (Long)

 horizontal distance of the shadow from the drawing object in hundredths of a
millimeter

The following example creates a rectangle with a shadow that is vertically and

Chapter 8 · Drawings and Presentations 177

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html

Elementary Properties of Drawing Objects

horizontally offset from the rectangle by 2 millimeters. The shadow is rendered in
dark gray with 50 percent transparency.

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.Shadow = True
RectangleShape.ShadowColor = RGB(192,192,192)
RectangleShape.ShadowTransparence = 50
RectangleShape.ShadowXDistance = 200
RectangleShape.ShadowYDistance = 200

Page.add(RectangleShape)

An Overview of Various Drawing
Objects

Rectangle Shapes

Rectangle shape objects (com.sun.star.drawing.RectangleShape) support the
following services for formatting objects:

 Fill properties

com.sun.star.drawing.FillProperties

 Line properties

com.sun.star.drawing.LineProperties

 Text properties

com.sun.star.drawing.Text (with com.sun.star.style.CharacterProperties and

178 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RectangleShape.html

An Overview of Various Drawing Objects

com.sun.star.style.ParagraphProperties)

 Shadow properties

com.sun.star.drawing.ShadowProperties

 CornerRadius (Long)

 radius for rounding corners in hundredths of a millimeter

Circles and Ellipses

The Service com.sun.star.drawing.EllipseShape service is responsible for circles and
ellipses and supports the following services:

 Fill properties

com.sun.star.drawing.FillProperties

 Line properties

com.sun.star.drawing.LineProperties

 Text properties

com.sun.star.drawing.Text (with com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties

com.sun.star.drawing.ShadowProperties

In addition to these services, circles and ellipses also provide these properties:

 CircleKind (Enum)

 type of circle or ellipse (default values in accordance with
com.sun.star.drawing.CircleKind)

 CircleStartAngle (Long)

 start angle in tenths of a degree (only for circle or ellipse segments)

 CircleEndAngle (Long)

 end angle in tenths of a degree (only for circle or ellipse segments)

The CircleKind property determines if an object is a complete circle, a circular slice,
or a section of a circle. The following values are available:

com.sun.star.drawing.CircleKind.FULL

 full circle or full ellipse

Chapter 8 · Drawings and Presentations 179

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind/FULL.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/EllipseShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html

An Overview of Various Drawing Objects

com.sun.star.drawing.CircleKind.CUT

 section of circle (partial circle whose interfaces are linked directly to one
another)

com.sun.star.drawing.CircleKind.SECTION

 circle slice

com.sun.star.drawing.CircleKind.ARC

 angle (not including circle line)

The following example creates a circular slice with a 70 degree angle (produced from
difference between start angle of 20 degrees and end angle of 90 degrees)

Dim Doc As Object
Dim Page As Object
Dim EllipseShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

EllipseShape = Doc.createInstance("com.sun.star.drawing.EllipseShape")
EllipseShape.Size = Size
EllipseShape.Position = Point

EllipseShape.CircleStartAngle = 2000
EllipseShape.CircleEndAngle = 9000
EllipseShape.CircleKind = com.sun.star.drawing.CircleKind.SECTION

Page.add(EllipseShape)

Lines

OpenOffice.org provides the com.sun.star.drawing.LineShape service for line objects.
Line objects support all of the general formatting services with the exception of areas.
The following are all of the properties that are associated with the LineShape service:

 Line properties

com.sun.star.drawing.LineProperties

 Text properties

com.sun.star.drawing.Text (with com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

180 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind/ARC.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind/SECTION.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/CircleKind/CUT.html

An Overview of Various Drawing Objects

 Shadow properties

com.sun.star.drawing.ShadowProperties

The following example creates and formats a line with the help of the named
properties. The origin of the line is specified in the Location property, whereas the
coordinates listed in the Size property specify the end point of the line.

Dim Doc As Object
Dim Page As Object
Dim LineShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

LineShape = Doc.createInstance("com.sun.star.drawing.LineShape")
LineShape.Size = Size
LineShape.Position = Point

Page.add(LineShape)

Polypolygon Shapes

OpenOffice.org also supports complex polygonal shapes through the
com.sun.star.drawing.PolyPolygonShape service. Strictly speaking, a PolyPolygon is
not a simple polygon but a multiple polygon. Several independent lists containing
corner points can therefore be specified and combined to form a complete object.

As with rectangle shapes, all the formatting properties of drawing objects are also
provided for polypolygons:

 Fill properties

com.sun.star.drawing.FillProperties

 Line properties

com.sun.star.drawing.LineProperties

 Text properties

com.sun.star.drawing.Text (with com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

Chapter 8 · Drawings and Presentations 181

http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/PolyPolygonShape.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html

An Overview of Various Drawing Objects

 Shadow properties

com.sun.star.drawing.ShadowProperties

The PolyPolygonShape service also has a property that lets you define the
coordinates of a polygon:

 PolyPolygon (Array) – field containing the coordinates of the polygon (double
array with points of the com.sun.star.awt.Point type)

The following example shows how you can define a triangle with the
PolyPolygonShape service.

Dim Doc As Object
Dim Page As Object
Dim PolyPolygonShape As Object
Dim PolyPolygon As Variant
Dim Coordinates(2) As New com.sun.star.awt.Point

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

PolyPolygonShape = Doc.createInstance("com.sun.star.drawing.PolyPolygonShape")
Page.add(PolyPolygonShape) ' Page.add must take place before the coordinates
are set

Coordinates(0).x = 1000
Coordinates(1).x = 7500
Coordinates(2).x = 10000
Coordinates(0).y = 1000
Coordinates(1).y = 7500
Coordinates(2).y = 5000

PolyPolygonShape.PolyPolygon = Array(Coordinates())

Since the points of a polygon are defined as absolute values, you do not need to
specify the size or the start position of a polygon. Instead, you need to create an
array of the points, package this array in a second array (using the
Array(Coordinates()) call), and then assign this array to the polygon. Before the
corresponding call can be made, the polygon must be inserted into the document.

The double array in the definition allows you to create complex shapes by merging
several polygons. For example, you can create a rectangle and then insert another
rectangle inside it to create a hole in the original rectangle:

Dim Doc As Object
Dim Page As Object
Dim PolyPolygonShape As Object
Dim PolyPolygon As Variant
Dim Square1(3) As New com.sun.star.awt.Point
Dim Square2(3) As New com.sun.star.awt.Point
Dim Square3(3) As New com.sun.star.awt.Point

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

182 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/awt/Point.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html

An Overview of Various Drawing Objects

PolyPolygonShape = Doc.createInstance("com.sun.star.drawing.PolyPolygonShape")

Page.add(PolyPolygonShape) ' Page.add must take place before the coordinates
are set

Square1(0).x = 5000
Square1(1).x = 10000
Square1(2).x = 10000
Square1(3).x = 5000
Square1(0).y = 5000
Square1(1).y = 5000
Square1(2).y = 10000
Square1(3).y = 10000

Square2(0).x = 6500
Square2(1).x = 8500
Square2(2).x = 8500
Square2(3).x = 6500
Square2(0).y = 6500
Square2(1).y = 6500
Square2(2).y = 8500
Square2(3).y = 8500

Square3(0).x = 6500
Square3(1).x = 8500
Square3(2).x = 8500
Square3(3).x = 6500
Square3(0).y = 9000
Square3(1).y = 9000
Square3(2).y = 9500
Square3(3).y = 9500

PolyPolygonShape.PolyPolygon = Array(Square1(), Square2(), Square3())

With respect as to which areas are filled and which areas are holes, OpenOffice.org
applies a simple rule: the edge of the outer shape is always the outer border of the
polypolygon. The next line inwards is the inner border of the shape and marks the
transition to the first hole. If there is another line inwards, it marks the transition to a
filled area.

Graphics

The last of the drawing elements presented here are graphic objects that are based
on the com.sun.star.drawing.GraphicObjectShape service. These can be used with
any graphic within OpenOffice.org whose appearance can be adapted using a whole
range of properties.

Graphic objects support two of the general formatting properties:

Chapter 8 · Drawings and Presentations 183

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/GraphicObjectShape.html

An Overview of Various Drawing Objects

 Text properties

com.sun.star.drawing.Text (with com.sun.star.style.CharacterProperties and
com.sun.star.style.ParagraphProperties)

 Shadow properties

com.sun.star.drawing.ShadowProperties

Additional properties that are supported by graphic objects are:

 GraphicURL (String)

 URL of the graphic

 AdjustLuminance (Short)

 luminance of the colors, as a percentage (negative values are also permitted)

 AdjustContrast (Short)

 contrast as a percentage (negative values are also permitted)

 AdjustRed (Short)

 red value as a percentage (negative values are also permitted)

 AdjustGreen (Short)

 green value as a percentage (negative values are also permitted)

 AdjustBlue (Short)

 blue value as a percentage (negative values are also permitted)

 Gamma (Short)

 gamma value of a graphic

 Transparency (Short)

 transparency of a graphic as a percentage

 GraphicColorMode (enum)

 color mode, for example, standard, gray stages, black and white (default value
in accordance with com.sun.star.drawing.ColorMode)

The following example shows how to insert a page into a graphics object.Dim Doc As
Object

Dim Page As Object
Dim GraphicObjectShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000 ' specifications, insignificant because latter
 coordinates are binding

184 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ColorMode.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShadowProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/ParagraphProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/Text.html

An Overview of Various Drawing Objects

Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

GraphicObjectShape =
Doc.createInstance("com.sun.star.drawing.GraphicObjectShape")

GraphicObjectShape.Size = Size
GraphicObjectShape.Position = Point

GraphicObjectShape.GraphicURL = "file:///c:/test.jpg"
GraphicObjectShape.AdjustBlue = -50
GraphicObjectShape.AdjustGreen = 5
GraphicObjectShape.AdjustBlue = 10
GraphicObjectShape.AdjustContrast = 20
GraphicObjectShape.AdjustLuminance = 50
GraphicObjectShape.Transparency = 40
GraphicObjectShape.GraphicColorMode = com.sun.star.drawing.ColorMode.STANDARD

Page.add(GraphicObjectShape)

This code inserts the test.jpg graphic and adapts its appearance using the Adjust
properties. In this example, the graphics are depicted as 40 percent transparent with
no other color conversions do not take place (GraphicColorMode = STANDARD).

Editing Drawing Objects

Grouping Objects

In many situations, it is useful to group several individual drawing objects together so
that they behave as a single large object.

The following example combines two drawing objects:

Dim Doc As Object
Dim Page As Object
Dim Square As Object
Dim Circle As Object
Dim Shapes As Object
Dim Group As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size
Dim NewPos As New com.sun.star.awt.Point

Chapter 8 · Drawings and Presentations 185

Grouping Objects

Dim Height As Long
Dim Width As Long

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)
Point.x = 3000
Point.y = 3000
Size.Width = 3000
Size.Height = 3000
' create square drawing element
Square = Doc.createInstance("com.sun.star.drawing.RectangleShape")
Square.Size = Size
Square.Position = Point
Square.FillColor = RGB(255,128,128)
Page.add(Square)

' create circle drawing element
Circle = Doc.createInstance("com.sun.star.drawing.EllipseShape")
Circle.Size = Size
Circle.Position = Point
Circle.FillColor = RGB(255,128,128)
Circle.FillColor = RGB(0,255,0)
Page.add(Circle)

' combine square and circle drawing elements
Shapes = createUnoService("com.sun.star.drawing.ShapeCollection")
Shapes.add(Square)

Shapes.add(Circle)
Group = Page.group(Shapes)
' centre combined drawing elements
Height = Page.Height
Width = Page.Width
NewPos.X = Width / 2
NewPos.Y = Height / 2
Height = Group.Size.Height
Width = Group.Size.Width
NewPos.X = NewPos.X - Width / 2
NewPos.Y = NewPos.Y - Height / 2
Group.Position = NewPos

This code creates a rectangle and a circle and inserts them into a page. It then
creates an object that supports the com.sun.star.drawing.ShapeCollection service
and uses the Add method to add the rectangle and the circle to this object. The
ShapeCollection is added to the page using the Group method and returns the actual
Group object that can be edited like an individual Shape.

If you want to format the individual objects of a group, apply the formatting before you
add them to the group. You cannot modify the objects once they are in the group.

186 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/ShapeCollection.html

Rotating and Shearing Drawing Objects

Rotating and Shearing Drawing
Objects

All of the drawing objects that are described in the previous sections can also be
rotated and sheared using the com.sun.star.drawing.RotationDescriptor service.

The service provides the following properties:

 RotateAngle (Long)

 rotary angle in hundredths of a degree

 ShearAngle (Long)

 shear angle in hundredths of a degree

The following example creates a rectangle and rotates it by 30 degrees using the
RotateAngle property:

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.RotateAngle = 3000

Page.add(RectangleShape)

The next example creates the same rectangle as in the previous example, but
instead shears it through 30 degrees using the ShearAngle property.

Dim Doc As Object
Dim Page As Object
Dim RectangleShape As Object
Dim Point As New com.sun.star.awt.Point
Dim Size As New com.sun.star.awt.Size

Point.x = 1000
Point.y = 1000
Size.Width = 10000

Chapter 8 · Drawings and Presentations 187

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/RotationDescriptor.html

Rotating and Shearing Drawing Objects

Size.Height = 10000

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)
RectangleShape = Doc.createInstance("com.sun.star.drawing.RectangleShape")
RectangleShape.Size = Size
RectangleShape.Position = Point

RectangleShape.ShearAngle = 3000

Page.add(RectangleShape)

Searching and Replacing

As in text documents, drawing documents provide a function for searching and
replace. This function is similar to the one that is used in text documents as described
in Text Documents. However, in drawing documents the descriptor objects for
searching and replacing are not created directly through the document object, but
rather through the associated character level. The following example outlines the
replacement process within a drawing:

Dim Doc As Object
Dim Page As Object
Dim ReplaceDescriptor As Object
Dim I As Integer

Doc = StarDesktop.CurrentComponent
Page = Doc.drawPages(0)

ReplaceDescriptor = Page.createReplaceDescriptor()
ReplaceDescriptor.SearchString = "is"
ReplaceDescriptor.ReplaceString = "was"

For I = 0 to Doc.drawPages.Count - 1
 Page = Doc.drawPages(I)
 Page.ReplaceAll(ReplaceDescriptor)
Next I

This code uses the first DrawPage of the document to create a ReplaceDescriptor and
then applies this descriptor in a loop to all of the pages in the drawing document.

Presentations

OpenOffice.org presentations are based on drawing documents. Each page in the
presentation is a slide. You can access slides in the same way as a standard drawing

188 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=96872

Searching and Replacing

is accessed through the DrawPages list of the document object. The
com.sun.star.presentation.PresentationDocument service, responsible for
presentation documents, also provides the complete
com.sun.star.drawing.DrawingDocument service.

Working With Presentations

In addition to the drawing functions that are provided by the Presentation property,
the presentation document has a presentation object that provides access to the
main properties and control mechanisms for presentations. For example, this object
provides a start method that can start presentations.

Dim Doc As Object
Dim Presentation As Object

Doc = StarDesktop.CurrentComponent
Presentation = Doc.Presentation
Presentation.start()

The code used in this example creates a Doc object that references the current
presentation document and establishes the associated presentation object. The
start() method of the object is used to start the example and run the screen
presentation.

The following methods are provided as presentation objects:

 start

 starts the presentation

 end

 ends the presentation

 rehearseTimings

 starts the presentation from the beginning and establishes its runtime

The following properties are also available:

 AllowAnimations (Boolean)

 runs animations in the presentation

 CustomShow (String)

 allows you to specify the name of the presentation so that you can reference
the name in the presentation

Chapter 8 · Drawings and Presentations 189

http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/DrawingDocument.html
http://api.openoffice.org/docs/common/ref/com/sun/star/presentation/PresentationDocument.html

Working With Presentations

 FirstPage (String)

 name of slide that you want to start the presentation with

 IsAlwaysOnTop (Boolean)

 always displays the presentation window as the first window on the screen

 IsAutomatic (Boolean)

 automatically runs through the presentation

 IsEndless (Boolean)

 restarts the presentation from the beginning once it ends

 IsFullScreen (Boolean)

 automatically starts the presentation in full screen mode

 IsMouseVisible (Boolean)

 displays the mouse during the presentation

 Pause (long)

 the amount of time that a blank screen is displayed at the end of the
presentation

 StartWithNavigator (Boolean)

 displays the navigator window when the presentation starts

 UsePn (Boolean)

 displays the pointer during the presentation

190 OpenOffice.org 3.1 BASIC Guide · April 2009

9   C H A P T E R 9

9 Charts (Diagrams)

OpenOffice.org can display data as a chart, which creates graphical representations
of numerical data in the form of bars, pie charts, lines or other elements. Data can
either be displayed as 2D or 3D graphics, and the appearance of the chart elements
can be individually adapted in a way similar to the process used for drawing
elements.

Charts are not treated as independent documents in OpenOffice.org, but as objects
that are embedded in an existing document.

A chart may contain its own data or may display data from the container document.
For example charts in spreadsheets can display data obtained from the cell ranges
and charts in text documents can display data obtained from writer tables.

Using Charts in Spreadsheets

Charts within spreadsheets can display the data from an assigned cell range within
the spreadsheet. Any modifications made to the data within the spreadsheet will also
be reflected in the assigned chart. The following example shows how to create a
chart assigned to some cell ranges within a spreadsheet document:

Dim Doc As Object
Dim Charts As Object

191

Charts (Diagrams)

Dim Chart as Object
Dim Rect As New com.sun.star.awt.Rectangle
Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent
Charts = Doc.Sheets(0).Charts

Rect.X = 8000
Rect.Y = 1000
Rect.Width = 10000
Rect.Height = 7000
RangeAddress(0).Sheet = 0
RangeAddress(0).StartColumn = 0
RangeAddress(0).StartRow = 0
RangeAddress(0).EndColumn = 2
RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)

Although the code used in the example may appear to be complex, the central
processes are limited to three lines. The first central line creates the Doc document
variable, which references the current spreadsheet document (Doc line =
StarDesktop.CurrentComponent). The code used in the example then creates a list
containing all charts of the first spreadsheet (Charts line = Doc.Sheets(0).Charts).
Finally, in the last line, a new chart is added to this list using the addNewByName
method. This new chart is then visible to the user. The variable RangeAddress
determines the assigned cell range whose data will be displayed within the chart. The
variable Rect determines the position and size of the chart within the first sheet in the
spreadsheet document.

The previous example creates a bar chart. If a different chart type is needed, then the
bar chart must be explicitly replaced:

Chart = Charts.getByName("MyChart").embeddedObject
Chart.Diagram = Chart.createInstance("com.sun.star.chart.LineDiagram")

The first line defines the corresponding chart object. The second line replaces the
current chart with a new one — in this example, a line chart.

Note – In Microsoft Excel, a distinction is made between charts which have been
inserted as a separate page in a Microsoft Excel document and charts which are
embedded in a table page. Correspondingly, two different access methods are
defined there for charts. This distinction is not made in OpenOffice.org Basic,
because charts in OpenOffice.org Calc are always created as embedded objects of a
table page. The charts are always accessed using the Charts list of the associated
Sheet object.

192 OpenOffice.org 3.1 BASIC Guide · April 2009

Charts (Diagrams)

The Structure of Charts

The structure of a chart, and therefore the list of services and interfaces supported by
it, depends on the chart type. For example, the methods and properties of the Z-axis,
are available in 3D charts, but not in 2D charts, and in pie charts, there are no
interfaces for working with axes.

Title, Subtitle and Legend

Title, subtitle and legend are basic elements provided for every chart. The Chart
object provides the following properties for administrating these elements:

 HasMainTitle (Boolean)

 activates the title

 Title (Object)

 object with detailed information about the chart title (supports the
com.sun.star.chart.ChartTitle service)

 HasSubTitle(Boolean)

 activates the subtitle

 Subtitle (Object)

 object with detailed information about the chart subtitle (supports the
com.sun.star.chart.ChartTitle service)

 HasLegend (Boolean)

 activates the legend

 Legend (Object)

 object with detailed information about the legend (supports the
com.sun.star.chart.ChartLegend service)

Both services com.sun.star.chart.ChartTitle and
com.sun.star.chart.ChartLegend do support the service
com.sun.star.drawing.Shape. This allows to determine the position and size of the
elements using the Position and Size properties. As the size of the legend and the
titles is calculated automatically based on the current content and the character
height for example, the size property provides read access only.

Chapter 9 · Charts (Diagrams) 193

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartLegend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartTitle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartTitle.html

Title, Subtitle and Legend

Fill and line properties (com.sun.star.drawing.FillProperties and
com.sun.star.drawing.LineProperties services) as well as the character properties
(com.sun.star.style.CharacterProperties service) are provided for further formatting of
the elements.

com.sun.star.chart.ChartTitle contains not only the listed formatting properties, but
also two other properties:

 String (String)

 text which to be displayed as the title or subtitle

 TextRotation (Long)

 angle of rotation of text in 100ths of a degree

The legend (com.sun.star.chart.ChartLegend) contains the following additional
property:

 Alignment (Enum)

 position at which the legend appears (value of type
com.sun.star.chart.ChartLegendPosition)

The following example creates a chart with a title "Main Title String", a subtitle
"Subtitle String" and a legend. The legend has a gray background color, is placed at
the bottom of the chart, and has a character size of 7 points.

Dim Doc As Object
Dim Charts As Object
Dim Chart as Object
Dim Rect As New com.sun.star.awt.Rectangle
Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Rect.X = 8000
Rect.Y = 1000
Rect.Width = 10000
Rect.Height = 7000
RangeAddress(0).Sheet = 0
RangeAddress(0).StartColumn = 0
RangeAddress(0).StartRow = 0
RangeAddress(0).EndColumn = 2
RangeAddress(0).EndRow = 12

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts
Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)
Chart = Charts.getByName("MyChart").EmbeddedObject
Chart.HasMainTitle = True
Chart.Title.String = "Main Title String"
Chart.HasSubTitle = True
Chart.Subtitle.String = "Subtitle String"
Chart.HasLegend = True
Chart.Legend.Alignment = com.sun.star.chart.ChartLegendPosition.BOTTOM

194 OpenOffice.org 3.1 BASIC Guide · April 2009

http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartLegendPosition.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartLegend.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartTitle.html
http://api.openoffice.org/docs/common/ref/com/sun/star/style/CharacterProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/LineProperties.html
http://api.openoffice.org/docs/common/ref/com/sun/star/drawing/FillProperties.html

Title, Subtitle and Legend

Chart.Legend.FillStyle = com.sun.star.drawing.FillStyle.SOLID
Chart.Legend.FillColor = RGB(210, 210, 210)
Chart.Legend.CharHeight = 7

Background

Every chart has a background area. The Chart object provides the property Area to
format the background:

 Area (Object)

 background area of the chart (supports com.sun.star.chart.ChartArea service)

The background of a chart covers its complete area, including the area under the title,
subtitle and legend. The associated com.sun.star.chart.ChartArea service supports
line and fill properties.

Diagram

The Chart object provides the property Diagram which forms the coordinate system
with axes and grids, where the data finally is displayed:

 Diagram (Object)

 object forming the coordinate system where the data is plotted. It supports
com.sun.star.chart.Diagram service and:

 com.sun.star.chart.StackableDiagram
 com.sun.star.chart.ChartAxisXSupplier
 com.sun.star.chart.ChartAxisYSupplier
 com.sun.star.chart.ChartAxisZSupplier
 com.sun.star.chart.ChartTwoAxisXSupplier
 com.sun.star.chart.ChartTwoAxisYSupplier

Different services are supported depending on the chart type (see Chart Types).

Chapter 9 · Charts (Diagrams) 195

http://wiki.services.openoffice.org/w/index.php?oldid=104512
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/Diagram.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartArea.html
http://api.openoffice.org/docs/common/ref/com/sun/star/chart/ChartArea.html

Wall and Floor

Wall and Floor

The chart wall is the background of the coordinate system where the data is plotted.
Two chart walls usually exist for 3D charts: one behind the plotted data and one as
the left-hand or right-hand demarcation. This depends on the rotation of the chart. 3D
charts usually also have a floor.

The Diagram object provides the properties Wall and Floor:

 Wall (Object)

 background wall of the coordinate system (supports
com.sun.star.chart.ChartArea service)

 Floor (Object)

 floor panel of coordinate system (only for 3D charts, supports
com.sun.star.chart.ChartArea service)

The specified objects support the com.sun.star.chart.ChartArea service, which
provides the usual fill and line properties (com.sun.star.drawing.FillProperties and
com.sun.star.drawing.LineProperties services, refer to Drawings and Presentations).

The following example shows how graphics (named Sky) already contained in
OpenOffice.org can be used as a background for a chart. The wall is set to be blue.

Dim Doc As Object
Dim Charts As Object
Dim Chart as Object
Dim Rect As New com.sun.star.awt.Rectangle
Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Rect.X = 8000
Rect.Y = 1000
Rect.Width = 10000
Rect.Height = 7000
RangeAddress(0).Sheet = 0
RangeAddress(0).StartColumn = 0
RangeAddress(0).StartRow = 0
RangeAddress(0).EndColumn = 2
RangeAddress(0).EndRow = 12

Doc = StarDesktop.CurrentComponent

Charts = Doc.Sheets(0).Charts
Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)
Chart = Charts.getByName("MyChart").EmbeddedObject
Chart.Area.FillStyle = com.sun.star.drawing.FillStyle.BITMAP
Chart.Area.FillBitmapName = "Sky"
Chart.Area.FillBitmapMode = com.sun.star.drawing.BitmapMode.REPEAT

Chart.Diagram.Wall.FillStyle = com.sun.star.drawing.FillStyle.SOLID
Chart.Diagram.Wall.FillColor = RGB(00,132,209)

196 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=96882

Axes

Axes

OpenOffice.org recognizes five different axes that can be used in a chart. In the
simplest scenario, these are the X and Y-axes. When working with 3D charts, a Z-
axis is also sometimes provided. For charts in which the values of the various rows of
data deviate significantly from one another, OpenOffice.org provides a second X and
Y-axis for second scaling operations.

The Diagram object provides the following properties to access the axes:

 HasXAxis (Boolean)

 activates the X-axis

 XAxis (Object)

 object with detailed information about the X-axis (supports
com.sun.star.chart.ChartAxis service)

 HasXAxisDescription (Boolean)

 activates the labels for the interval marks for the X-axis

 HasYAxis (Boolean)

 activates the Y-axis

 YAxis (Object)

 object with detailed information about the Y-axis (supports
com.sun.star.chart.ChartAxis service)

 HasYAxisDescription (Boolean)

 activates the labels for the interval marks for the Y-axis

 HasZAxis (Boolean)

 activates the Z-axis

 ZAxis (Object)

 object with detailed information about the Z-axis (supports
com.sun.star.chart.ChartAxis service)

 HasZAxisDescription (Boolean)

 activates the labels for the interval marks for the Z-axis

 HasSecondaryXAxis (Boolean)

 activates the secondary X-axis

Chapter 9 · Charts (Diagrams) 197

Axes

 SecondaryXAxis (Object)

 object with detailed information about the secondary X-axis (supports
com.sun.star.chart.ChartAxis service)

 HasSecondaryXAxisDescription (Boolean)

 activates the labels for the interval marks for the secondary X-axis

 HasSecondaryYAxis (Boolean)

 activates the secondary Y-axis

 SecondaryYAxis (Object)

 object with detailed information about the secondary Y-axis (supports
com.sun.star.chart.ChartAxis service)

 HasSecondaryYAxisDescription (Boolean)

 activates the labels for the interval marks for the secondary Y-axis

Properties of Axes

The axis objects of a OpenOffice.org chart support the com.sun.star.chart.ChartAxis
service. In addition to the properties for characters
(com.sun.star.style.CharacterProperties service, refer to Text Documents) and lines
(com.sun.star.drawing.LineStyle service, refer to Drawings and Presentations), it
provides the following properties:

Scaling properties:

 Max (Double)

 maximum value for axis

 Min (Double)

 minimum value for axis

 Origin (Double)

 point of intersect for crossing axes

 StepMain (Double)

 distance between the major interval marks

198 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=96882
http://wiki.services.openoffice.org/w/index.php?oldid=96872

Properties of Axes

 StepHelp (Double)

 distance between the minor interval marks (deprecated since OpenOffice.org
3.0; Use property StepHelpCount instead)

 StepHelpCount (Long)

 Contains the number of minor intervals within a major interval. E.g. a
StepHelpCount of 5 divides the major interval into 5 pieces and thus produces 4
minor tick marks. (available since OpenOffice.org 3.0)

 AutoMax (Boolean)

 the maximum value for the axis is calculated automatically when set to true

 AutoMin (Boolean)

 the minimum value for the axis is calculated automatically when set to true

 AutoOrigin (Boolean)

 the origin is determines automatically when set to true

 AutoStepMain (Boolean)

 StepMain is determines automatically when set to true

 AutoStepHelp (Boolean)

 StepHelpCount is determines automatically when set to true

 Logarithmic (Boolean)

 scales the axes in logarithmic manner (rather than linear)

 ReverseDirection (Boolean)

 determines if the axis orientation is mathematical or reversed. (available since
OpenOffice.org 2.4)

Label properties:

 DisplayLabels (Boolean)

 activates the text label at the interval marks

 TextRotation (Long)

 angle of rotation of text label in 100ths of a degree

 ArrangeOrder (enum)

 the label may be staggered, thus they are positioned alternately over two lines
(values according to com.sun.star.chart.ChartAxisArrangeOrderType)

Chapter 9 · Charts (Diagrams) 199

Properties of Axes

 TextBreak (Boolean)

 permits line breaks within the axes labels

 TextCanOverlap (Boolean)

 permits an overlap of the axes labels

 NumberFormat (Long)

 number format to be used with the axes labels

 LinkNumberFormatToSource (Boolean)

 determines whether to use the number format given by the container document,
or from the property NumberFormat. (since OpenOffice.org 2.3)

Interval mark properties:

 Marks (Const)

 determines the position of the major interval marks (values in accordance with
com.sun.star.chart.ChartAxisMarks)

 HelpMarks (Const)

 determines the position of the minor interval marks (values in accordance with
com.sun.star.chart.ChartAxisMarks)

Only for bar charts:

 Overlap (Long)

 percentage which specifies the extent to which the bars of different sets of data
may overlap (at 100%, the bars are shown as completely overlapping, at -100%,
there is a distance of the width of one bar between them)

 GapWidth (long)

 percentage which specifies the distance there may be between the different
groups of bars of a chart (at 100%, there is a distance corresponding to the
width of one bar)

200 OpenOffice.org 3.1 BASIC Guide · April 2009

Grids

Grids

For the primary axes grids and sub grids can be displayed, matching to the major and
minor intervals. The Diagram object provides the following properties to access the
grids:

 HasXAxisGrid (Boolean)

 activates major grid for X-axis

 XMainGrid (Object)

 object with detailed information about the major grid for X-axis (supports
com.sun.star.chart.ChartGrid service)

 HasXAxisHelpGrid (Boolean)

 activates minor grid for X-axis

 XHelpGrid (Object)

 object with detailed information about the minor grid for X-axis (supports
com.sun.star.chart.ChartGrid service)

the same for y and z:

 HasYAxisGrid (Boolean)

 activates major grid for Y-axis

 YMainGrid (Object)

 object with detailed information about the major grid for Y-axis (supports
com.sun.star.chart.ChartGrid service)

 HasYAxisHelpGrid (Boolean)

 activates minor grid for Y-axis

 YHelpGrid (Object)

 object with detailed information about the minor grid for Y-axis (supports
com.sun.star.chart.ChartGrid service)

 HasZAxisGrid (Boolean)

 activates major grid for Z-axis

 ZMainGrid (Object)

 object with detailed information about the major grid for Z-axis (supports
com.sun.star.chart.ChartGrid service)

Chapter 9 · Charts (Diagrams) 201

Grids

 HasZAxisHelpGrid (Boolean)

 activates minor grid for Z-axis

 ZHelpGrid (Object)

 object with detailed information about the minor grid for Z-axis (supports
com.sun.star.chart.ChartGrid service)

The grid object is based on the com.sun.star.chart.ChartGrid service, which in turn
supports the line properties of the com.sun.star.drawing.LineStyle support service
(refer to Drawings and Presentations).

Axes Title

For all axes an additional title can be displayed. The Diagram object provides the
following properties to access the axes title:

 HasXAxisTitle (Boolean)

 activates title of X-axis

 XAxisTitle (Object)

 object with detailed information about title of the X-axis (supports
com.sun.star.chart.ChartTitle service)

same y and z:

 HasYAxisTitle (Boolean)

 activates title of Y-axis

 YAxisTitle (Object)

 object with detailed information about title of the Y-axis (supports
com.sun.star.chart.ChartTitle service)

 HasZAxisTitle (Boolean)

 activates title of Z-axis

 ZAxisTitle (Object)

 object with detailed information about title of the Z-axis (supports
com.sun.star.chart.ChartTitle service)

and for the secondary axes (available since OpenOffice.org 3.0):

202 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=96882

Axes Title

 HasSecondaryXAxisTitle (Boolean)

 activates title of the secondary X-axis.

 SecondXAxisTitle (Object)

 object with detailed information about title of the secondary X-axis (supports
com.sun.star.chart.ChartTitle service)

 HasSecondaryYAxisTitle (Boolean)

 activates title of the secondary Y-axis.

 SecondYAxisTitle (Object)

 object with detailed information about title of the secondary Y-axis (supports
com.sun.star.chart.ChartTitle service)

The objects for formatting the axes title are based on the
com.sun.star.chart.ChartTitle service, which is also used for chart titles.

Example

The following example creates a line chart. The color for the rear wall of the chart is
set to white. Both the X and Y-axes have a gray grid for visual orientation. The
minimum value of the Y-axis is fixed to 0 and the maximum value is fixed to 100 so
that the resolution of the chart is retained even if the values are changed. The X-axis
points in reverse direction from right to left. And a title for the X-axis was added.

Dim Doc As Object
Dim Charts As Object
Dim Chart as Object
Dim Rect As New com.sun.star.awt.Rectangle
Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent
Charts = Doc.Sheets(0).Charts

Rect.X = 8000
Rect.Y = 1000
Rect.Width = 10000
Rect.Height = 7000
RangeAddress(0).Sheet = 0
RangeAddress(0).StartColumn = 0
RangeAddress(0).StartRow = 0
RangeAddress(0).EndColumn = 2
RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)
Chart = Charts.getByName("MyChart").embeddedObject
Chart.Diagram = Chart.createInstance("com.sun.star.chart.LineDiagram")
Chart.Diagram.Wall.FillColor = RGB(255, 255, 255)
Chart.Diagram.HasXAxisGrid = True

Chapter 9 · Charts (Diagrams) 203

Axes Title

Chart.Diagram.XMainGrid.LineColor = RGB(192, 192, 192)
Chart.Diagram.HasYAxisGrid = True
Chart.Diagram.YMainGrid.LineColor = RGB(192, 192, 192)
Chart.Diagram.YAxis.Min = 0
Chart.Diagram.YAxis.Max = 100

Chart.Diagram.XAxis.ReverseDirection = true 'needs OpenOffice.org 2.4 or newer
Chart.Diagram.HasXAxisTitle = true
Chart.Diagram.XAxisTitle.String = "Reversed X Axis Example"

3D Charts

Most charts in OpenOffice.org can also be displayed with 3D graphics. The following
properties are provided for 3D charts at the Diagram object:

 Dim3D (Boolean)

 activates 3D display

 Deep (Boolean)

 the series will be arranged behind each other in z-direction

 RightAngledAxes (Boolean)

 activates a 3D display mode where X- and Y-axes form a right angle within the
projection. (available since OpenOffice.org 2.3)

 D3DScenePerspective (Enum)

 defines whether the 3D objects are to be drawn in perspective or parallel
projection.(values according to com.sun.star.drawing.ProjectionMode)

 Perspective (Long)

 Perspective of 3D charts ([0,100]) (available since OpenOffice.org 2.4.1)

 RotationHorizontal (Long)

 Horizontal rotation of 3D charts in degrees ([-180,180]) (available since
OpenOffice.org 2.4.1)

 RotationVertical (Long)

 Vertical rotation of 3D charts in degrees ([-180,180]) (available since
OpenOffice.org 2.4.1)

The following example creates a 3D area chart.

Dim Doc As Object
Dim Charts As Object
Dim Chart as Object

204 OpenOffice.org 3.1 BASIC Guide · April 2009

3D Charts

Dim Rect As New com.sun.star.awt.Rectangle
Dim RangeAddress(0) As New com.sun.star.table.CellRangeAddress

Doc = StarDesktop.CurrentComponent
Charts = Doc.Sheets(0).Charts

Rect.X = 8000
Rect.Y = 1000
Rect.Width = 10000
Rect.Height = 7000
RangeAddress(0).Sheet = 0
RangeAddress(0).StartColumn = 0
RangeAddress(0).StartRow = 0
RangeAddress(0).EndColumn = 2
RangeAddress(0).EndRow = 12

Charts.addNewByName("MyChart", Rect, RangeAddress(), True, True)
Chart = Charts.getByName("MyChart").embeddedObject
Chart.Diagram = Chart.createInstance("com.sun.star.chart.AreaDiagram")
Chart.Diagram.Dim3D = true
Chart.Diagram.Deep = true
Chart.Diagram.RightAngledAxes = true 'needs OpenOffice.org 2.3 or newer
Chart.Diagram.D3DScenePerspective =
com.sun.star.drawing.ProjectionMode.PERSPECTIVE
Chart.Diagram.Perspective = 100 'needs OpenOffice.org 2.4.1 or newer
Chart.Diagram.RotationHorizontal = 60 'needs OpenOffice.org 2.4.1 or newer
Chart.Diagram.RotationVertical = 30 'needs OpenOffice.org 2.4.1 or newer

Stacked Charts

Stacked charts are charts that are arranged with several individual values on top of
one another to produce a total value. This view shows not only the individual values,
but also an overview of all the values.

In OpenOffice.org, various types of charts can be displayed in a stacked form. All of
these charts support the com.sun.star.chart.StackableDiagram service, which in turn
provides the following properties:

 Stacked (Boolean)

 activates the stacked viewing mode

 Percent (Boolean)

 rather than absolute values, displays their percentage distribution

Chapter 9 · Charts (Diagrams) 205

Stacked Charts

Chart Types

Line Charts

Line charts (com.sun.star.chart.LineDiagram) support two X-axes, two Y-axes and
one Z-axis. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service). The lines can be stacked
(com.sun.star.chart.StackableDiagram).

Line charts provide the following properties:

 SymbolType (const)

 symbol for displaying the data points (constant in accordance with
com.sun.star.chart.ChartSymbolType)

 SymbolSize (Long)

 size of symbol for displaying the data points in 100ths of a millimeter

 SymbolBitmapURL (String)

 file name of graphics for displaying the data points

 Lines (Boolean)

 links the data points by means of lines

 SplineType (Long)

 spline function for smoothing the lines (0: no spline function, 1: cubic splines, 2:
B splines)

 SplineOrder (Long)

 polynomial weight for splines (only for B splines)

 SplineResolution (Long)

 number of support points for spline calculation

Area Charts

Area charts (com.sun.star.chart.AreaDiagram service) support two X-axes, two Y-

206 OpenOffice.org 3.1 BASIC Guide · April 2009

Area Charts

axes and one Z-axis. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service). The areas can be stacked
(com.sun.star.chart.StackableDiagram).

Bar Charts

Bar charts (com.sun.star.chart.BarDiagram) support two X-axes, two Y-axes and one
Z-axis. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3Ddiagram service). The bars can be stacked
(com.sun.star.chart.StackableDiagram).

They provide the following properties:

 Vertical (Boolean)

 displays the bars vertically, otherwise they are depicted horizontally

 Deep (Boolean)

 in 3D viewing mode, positions the bars behind one another rather than next to
one another

 StackedBarsConnected (Boolean)

 links the associated bars in a stacked chart by means of lines (only available
with horizontal charts)

 NumberOfLines (Long)

 number of lines to be displayed in a stacked chart as lines rather than bars

 GroupBarsPerAxis (Boolean)

 displays bars attached to different axes behind or next to each other (available
since OpenOffice.org 2.4)

Pie Charts

Pie charts (com.sun.star.chart.PieDiagram) do not contain any axes and cannot be
stacked. They can be displayed as 2D or 3D graphics
(com.sun.star.chart.Dim3DDiagram service).

The following properties are provided for pie and donut charts with the Diagram

Chapter 9 · Charts (Diagrams) 207

Pie Charts

object:

 StartingAngle (Long)

 angle of the first piece of a pie in degrees (available since OpenOffice.org 3.0)

208 OpenOffice.org 3.1 BASIC Guide · April 2009

10   C H A P T E R 1 0

10 Databases

OpenOffice.org has an integrated database interface (independent of any systems)
called Star Database Connectivity (SDBC). The objective of developing this interface
was to provide access to as many different data sources as possible.

To make this possible, data sources are accessed by drivers. The sources from which
the drivers take their data is irrelevant to a SDBC user. Some drivers access file-
based databases and take the data directly from them. Others use standard
interfaces such as JDBC or ODBC. There are, however, also special drivers which
access the MAPI address book, LDAP directories or OpenOffice.org spreadsheets as
data sources.

Since the drivers are based on UNO components, other drivers can be developed
and therefore open up new data sources. You will find details about this in the
OpenOffice.org Developer's Guide.

Note – In terms of its concept, SDBC is comparable with the ADO and DAO libraries
available in VBA. It permits high level access to databases, regardless of the
underlying database backends.

209

Databases

SQL: a Query Language

The SQL language is provided as a query language for users of SDBC. To compare
the differences between different SQL dialects, the SDBC components from
OpenOffice.org have their own SQL parser. This uses the query window to check the
SQL commands typed and corrects simple syntax errors, such as those associated
with uppercase and lowercase characters.

If a driver permits access to a data source that does not support SQL, then it must
independently convert the transferred SQL commands to the native access needed.

Types of Database Access

The database interface from OpenOffice.org is available in the OpenOffice.org Writer
and OpenOffice.org Calc applications, as well as in the database forms.

In OpenOffice.org Writer, standard letters can be created with the assistance of
SDBC data sources and these can then be printed out. You can also move data from
the database window into text documents using the drag-and-drop function.

If you move a database table into a spreadsheet, OpenOffice.org creates a table area
which can be updated at the click of the mouse if the original data has been modified.
Conversely, spreadsheet data can be moved to a database table and a database
import performed.

Finally, OpenOffice.org provides a mechanism for forms based on databases. To do
this, you first create a standard OpenOffice.org Writer or OpenOffice.org Calc form
and then link the fields to a database.

All the options specified here are based on the user interface from OpenOffice.org.
No programming knowledge is needed to use the corresponding functions.

This section, however, provides little information about the functions specified, but
instead concentrates on the programming interface from SDBC, which allows for
automated database querying and therefore permits a much greater range of
applications to be used.

Basic knowledge of the way in which databases function and the SQL query
language is however needed to fully understand the following sections.

210 OpenOffice.org 3.1 BASIC Guide · April 2009

Databases

Data Sources

A database is incorporated into OpenOffice.org by creating what is commonly
referred to as a data source. The user interface provides a corresponding option for
creating data sources in the Extras menu. You can also create data sources and work
with them using OpenOffice.org Basic.

A database context object that is created using the createUnoService function serves
as the starting point for accessing a data source. This based on the
com.sun.star.sdb.DatabaseContext service and is the root object for all database
operations.

The following example shows how a database context can be created and then used
to determine the names of all data sources available. It displays the names in a
message box.

Dim DatabaseContext As Object
Dim Names
Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")

Names = DatabaseContext.getElementNames()

For I = 0 To UBound(Names())
 MsgBox Names(I)
Next I

The individual data sources are based on the com.sun.star.sdb.DataSource service
and can be determined from the database context using the getByName method:

Dim DatabaseContext As Object
Dim DataSource As Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")
DataSource = DatabaseContext.getByName("Customers")

The example creates a DataSource object for a data source called Customers.

Data sources provide a range of properties, which in turn provide general information
about the origin of the data and information about access methods. The properties
are:

 Name (String)

 name of data source

 URL (String)

 URL of data source in the form of jdbc: subprotocol : subname or sdbc:
subprotocol : subname

Chapter 10 · Databases 211

Databases

 Settings (Array)

 array containing PropertyValue-pairs with connection parameters (usually at
least user name and password)

 User (String)

 user name

 Password (String)

 user password (is not saved)

 IsPasswordRequired (Boolean)

 the password is needed and is interactively requested from user.

 IsReadOnly (Boolean)

 permits read-only access to the database

 NumberFormatsSupplier (Object)

 object containing the number formats available for the database (supports the
com.sun.star.util.XNumberFormatsSupplier interface)

 TableFilter (Array)

 list of table names to be displayed

 TableTypeFilter (Array)

 list of table types to be displayed. Values available are TABLE, VIEW and SYSTEM
TABLE

 SuppressVersionColumns (Boolean)

 suppresses the display of columns that are used for version administration

Note – The data sources from OpenOffice.org are not 1:1 comparable with the data
sources in ODBC. Whereas an ODBC data source only covers information about the
origin of the data, a data source in OpenOffice.org also includes a range of
information about how the data is displayed within the database windows of
OpenOffice.org.

Queries

Predefined queries can be assigned to a data source. OpenOffice.org notes the SQL
commands of queries so that they are available at all times. Queries are used to

212 OpenOffice.org 3.1 BASIC Guide · April 2009

Queries

simplify working with databases because they can be opened with a simple mouse
click and also provide users without any knowledge of SQL with the option of issuing
SQL commands.

An object which supports the com.sun.star.sdb.QueryDefinition service is concealed
behind a query. The queries are accessed by means of the QueryDefinitions
method of the data source.

The following example lists the names of data source queries can be established in a
message box.

Dim DatabaseContext As Object
Dim DataSource As Object
Dim QueryDefinitions As Object
Dim QueryDefinition As Object
Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")
DataSource = DatabaseContext.getByName("Customers")
QueryDefinitions = DataSource.getQueryDefinitions()

For I = 0 To QueryDefinitions.Count() - 1
 QueryDefinition = QueryDefinitions(I)
 MsgBox QueryDefinition.Name
Next I

In addition to the Name property used in the example, the
com.sun.star.sdb.QueryDefinition provides a whole range of other properties. These
are:

 Name (String)

 query name

 Command (String)

 SQL command (typically a SELECT command)

The following example shows how a query object can be created in a program-
controlled manner and can be assigned to a data source.

Dim DatabaseContext As Object
Dim DataSource As Object
Dim QueryDefinitions As Object
Dim QueryDefinition As Object
Dim I As Integer

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")
DataSource = DatabaseContext.getByName("Customers")
QueryDefinitions = DataSource.getQueryDefinitions()
QueryDefinition = createUnoService("com.sun.star.sdb.QueryDefinition")
QueryDefinition.Command = "SELECT * FROM Customer"
QueryDefinitions.insertByName("NewQuery", QueryDefinition)

Chapter 10 · Databases 213

Queries

The query object is first created using the createUnoService call, then initialized, and
then inserted into the QueryDefinitions object by means of insertByName.

Database Access

A database connection is needed for access to a database. This is a transfer channel
which permits direct communication with the database. Unlike the data sources
presented in the previous section, the database connection must therefore be re-
established every time the program is restarted.

OpenOffice.org provides various ways of establishing database connections. This
example shows how to connect to an existing data source.

Dim DatabaseContext As Object
Dim DataSource As Object
Dim Connection As Object
Dim InteractionHandler as Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")
DataSource = DatabaseContext.getByName("Customers")

If Not DataSource.IsPasswordRequired Then
 Connection = DataSource.GetConnection("","")
Else
 InteractionHandler = createUnoService("com.sun.star.sdb.InteractionHandler")
 Connection = DataSource.ConnectWithCompletion(InteractionHandler)
End If

The code used in the example first checks whether the database is password
protected. If not, it creates the database connection required using the GetConnection
call. The two empty strings in the command line stand for the user name and
password.

If the database is password protected, the example creates an InteractionHandler
and opens the database connection using the ConnectWithCompletion method. The
InteractionHandler ensures that OpenOffice.org asks the user for the required login
data.

Iteration of Tables

A table is usually accessed in OpenOffice.org through the ResultSet object. A
ResultSet is a type of marker that indicates a current set of data within a volume of

214 OpenOffice.org 3.1 BASIC Guide · April 2009

Iteration of Tables

results obtained using the SELECT command.

This example shows how a ResultSet can be used to query values from a database
table.

Dim DatabaseContext As Object
Dim DataSource As Object
Dim Connection As Object
Dim InteractionHandler as Object
Dim Statement As Object
Dim ResultSet As Object

DatabaseContext = createUnoService("com.sun.star.sdb.DatabaseContext")
DataSource = DatabaseContext.getByName("Customers")

If Not DataSource.IsPasswordRequired Then
 Connection = DataSource.GetConnection("","")
Else
 InteractionHandler = createUnoService("com.sun.star.sdb.InteractionHandler")
 Connection = DataSource.ConnectWithCompletion(InteractionHandler)
End If

Statement = Connection.createStatement()
ResultSet = Statement.executeQuery("SELECT ""CustomerNumber"" FROM
""Customer""")

If Not IsNull(ResultSet) Then
 While ResultSet.next
 MsgBox ResultSet.getString(1)
 Wend
End If

Once the database connection has been established, the code used in the example
first uses the Connection.createObject call to create a Statement object. This
Statement object then uses the executeQuery call to return the actual ResultSet. The
program now checks whether the ResultSet actually exists and traverses the data
records using a loop. The values required (in the example, those from the
CustomerNumber field) returns the ResultSet using the getString method, whereby
the parameter 1 determines that the call relates to the values of the first column.

Note – The ResultSet object from SDBC is comparable with the Recordset object
from DAO and ADO, since this also provides iterative access to a database.

Note – The database is actually accessed in OpenOffice.org through a ResultSet
object. This reflects the content of a table or the result of a SQL-SELECT command.
In the past, the ResultSet object provided the resident methods in the Application
object for navigation within the data, for example, DataNextRecord).

Chapter 10 · Databases 215

Type-Specific Methods for Retrieving Values

Type-Specific Methods for Retrieving
Values

As can be seen in the example from the previous section, OpenOffice.org provides a
getString method for accessing table contents. The method provides the result in
the form of a string. The following get methods are available:

 getByte()

 supports the SQL data types for numbers, characters and strings

 getShort()

 supports the SQL data types for numbers, characters and strings

 getInt()

 supports the SQL data types for numbers, characters and strings

 getLong()

 supports the SQL data types for numbers, characters and strings

 getFloat()

 supports the SQL data types for numbers, characters and strings

 getDouble()

 supports the SQL data types for numbers, characters and strings

 getBoolean()

 supports the SQL data types for numbers, characters and strings

 getString()

 supports all SQL data types

 getBytes()

 supports the SQL data types for binary values

 getDate()

 supports the SQL data types for numbers, strings, date and time stamp

 getTime()

 supports the SQL data types for numbers, strings, date and time stamp

 getTimestamp()

 supports the SQL data types for numbers, strings, date and time stamp

216 OpenOffice.org 3.1 BASIC Guide · April 2009

Type-Specific Methods for Retrieving Values

 getCharacterStream()

 supports the SQL data types for numbers, strings and binary values

 getUnicodeStream()

 supports the SQL data types for numbers, strings and binary values

 getBinaryStream()

 binary values

 getObject()

 supports all SQL data types

In all instances, the number of columns should be listed as a parameter whose
values should be queried.

The ResultSet Variants

Accessing databases is often a matter of critical speed. OpenOffice.org provides
several ways of optimizing ResultSets and thereby controlling the speed of access.
The more functions a ResultSet provides, the more complex its implementation
usually is and therefore the slower the functions are.

A simple ResultSet, provides the minimum scope of functions available. It only
allows iteration to be applied forward, and for values to be interrogated. More
extensive navigation options, such as the possibility of modifying values, are
therefore not included.

The Statement object used to create the ResultSet provides some properties which
allow the functions of the ResultSet to be influenced:

 ResultSetConcurrency (const)

 specifications as to whether the data can be modified (specifications in
accordance with com.sun.star.sdbc.ResultSetConcurrency).

 ResultSetType (const)

 specifications regarding type of ResultSets (specifications in accordance with
com.sun.star.sdbc.ResultSetType).

The values defined in com.sun.star.sdbc.ResultSetConcurrency are:

Chapter 10 · Databases 217

The ResultSet Variants

 UPDATABLE

 ResultSet permits values to be modified

 READ_ONLY

 ResultSet does not permit modifications

The com.sun.star.sdbc.ResultSetConcurrency group of constants provides the
following specifications:

 FORWARD_ONLY

 ResultSet only permits forward navigation

 SCROLL_INSENSITIVE

 ResultSet permits any type of navigation, changes to the original data are,
however, not noted

 SCROLL_SENSITIVE

 ResultSet permits any type of navigation, changes to the original data impact
on the ResultSet

Note – A ResultSet containing the READ_ONLY and SCROLL_INSENSITIVE properties
corresponds to a record set of the Snapshot type in ADO and DAO.

When using the ResultSet's UPDATEABLE and SCROLL_SENSITIVE properties, the
scope of function of a ResultSet is comparable with a Dynaset type Recordset from
ADO and DAO.

Methods for Navigation in ResultSets

If a ResultSet is a SCROLL_INSENSITIVE or SCROLL_SENSITIVE type, it supports a
whole range of methods for navigation in the stock of data. The central methods are:

 next()

 navigation to the next data record

 previous()

 navigation to the previous data record

 first()

 navigation to the first data record

218 OpenOffice.org 3.1 BASIC Guide · April 2009

Methods for Navigation in ResultSets

 last()

 navigation to the last data record

 beforeFirst()

 navigation to before the first data record

 afterLast()

 navigation to after the last data record

All methods return a Boolean parameter which specifies whether the navigation was
successful.

To determine the current cursor position, the following test methods are provided and
all return a Boolean value:

 isBeforeFirst()

 ResultSet is before the first data record

 isAfterLast()

 ResultSet is after the last data record

 isFirst()

 ResultSet is the first data record

 isLast()

 ResultSet is the last data record

Modifying Data Records

If a ResultSet has been created with the ResultSetConcurrency = UPDATEABLE value,
then its content can be edited. This only applies for as long as the SQL command
allows the data to be re-written to the database (depends on principle). This is not, for
example, possible with complex SQL commands with linked columns or accumulated
values.

The ResultSet object provides Update methods for modifying values, which are
structured in the same way as the get methods for retrieving values. The
updateString method, for example, allows a string to be written.

After modification, the values must be transferred into the database using the
updateRow()method. The call must take place before the next navigation command,

Chapter 10 · Databases 219

Modifying Data Records

otherwise the values will be lost.

If an error is made during the modifications, this can be undone using the
cancelRowUpdates()method. This call is only available provided that the data has not
be re-written into the database using updateRow().

220 OpenOffice.org 3.1 BASIC Guide · April 2009

11   C H A P T E R 1 1

11 Dialogs

You can add custom dialog windows and forms to OpenOffice.org documents. These
in turn can be linked to OpenOffice.org Basic macros to considerably extend the
usage range of OpenOffice.org Basic. Dialogs can, for example, display database
information or guide users through a step-by-step process of creating a new
document in the form of a Wizard.

Working With Dialogs

OpenOffice.org Basic dialogs consist of a dialog window that can contain text fields,
list boxes, radio buttons, and other control elements.

Creating Dialogs

You can create and structure dialogs using the OpenOffice.org dialog editor:

221

Creating Dialogs

You can drag the control elements from the design pallet (right) into the dialog area,
and define their position and size.

The example shows a dialog that contains a label and a list box.

222 OpenOffice.org 3.1 BASIC Guide · April 2009

Creating Dialogs

You can open a dialog with the following code:

Dim Dlg As Object

DialogLibraries.LoadLibrary("Standard")
Dlg = CreateUnoDialog(DialogLibraries.Standard.DlgDef)
Dlg.Execute()
Dlg.dispose()

CreateUnoDialog creates an object called Dlg that references the associated dialog.
Before you can create the dialog, you must ensure that the library it uses (in this

Chapter 11 · Dialogs 223

Creating Dialogs

example, the Standard library) is loaded. The LoadLibrary method performs this task.

Once the Dlg dialog object has been initialized, you can use the Execute method to
display the dialog. Dialogs such as this one are described as modal because they do
not permit any other program action until they are closed. While this dialog is open,
the program remains in the Execute call.

The dispose method at the end of the code approves the resources used by the
dialog once the program ends.

Closing Dialogs

Closing With OK or Cancel

If a dialog contains an OK or a Cancel button, the dialog is automatically closed
when you click one of these buttons. More information about working with these
buttons is discussed in Dialog Control Elements in Detail.

If you close a dialog by clicking the OK button, the Execute-method returns a return
value of 1, otherwise a value of 0 is returned.

Dim Dlg As Object

DialogLibraries.LoadLibrary("Standard")
Dlg = CreateUnoDialog(DialogLibraries.Standard.MyDialog)
Select Case Dlg.Execute()
Case 1
 MsgBox "Ok pressed"
Case 0
 MsgBox "Cancel pressed"
End Select

Closing With the Close Button in the Title Bar

You can close a dialog by clicking the close button on the title bar of the dialog
window. The Execute method of the dialog returns the value 0, which is the same as
when you click Cancel.

224 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=114642

Closing Dialogs

Closing With an Explicit Program Call

You can also close an open dialog window with the endExecute method:

Dlg.endExecute()

Access to Individual Control Elements

A dialog can contain any number of control elements. You can access these elements
through the getControl method that returns the control element by name.

Dim Ctl As Object

Ctl = Dlg.getControl("MyButton")
Ctl.Label = "New Label"

This code determines the object for the MyButton control element and then initializes
the Ctl object variable with a reference to the element. Finally the code sets the
Label property of the control element to the New Label value.

Note – Unlike OpenOffice.org Basic identifiers, the names of control elements are
case sensitive.

Working With the Model of Dialogs and
Control Elements

The division between visible program elements (View) and the data or documents
behind them (Model) occurs at many places in OpenOffice.org API. In addition to the
methods and properties of control elements, both dialog and control element objects
have a subordinate Model object. This object allows you to directly access the content
of a dialog or control element.

In dialogs, the distinction between data and depiction is not always as clear as in
other API areas of OpenOffice.org. Elements of the API are available through both
the View and the Model.

The Model property provides program-controlled access to the model of dialog and
control element objects.

Chapter 11 · Dialogs 225

Working With the Model of Dialogs and Control Elements

Dim cmdNext As Object

cmdNext = Dlg.getControl("cmdNext")
cmdNext.Model.Enabled = False

This example deactivates the cmdNtext button in the Dlg dialog with the aid of the
model object from cmdNtext.

Properties

Name and Title

Every control element has its own name that can be queried using the following
model property:

 Model.Name (String)

 control element name

You can specify the title that appears in the title bar of a dialog with the following
model property:

 Model.Title (String)

 dialog title (only applies to dialogs)

Position and Size

You can query the size and position of a control element using the following
properties of the model object:

 Model.Height (long)

 height of control element (in ma units)

 Model.Width (long)

 width of control element (in ma units)

226 OpenOffice.org 3.1 BASIC Guide · April 2009

Position and Size

 Model.PositionX (long)

 X-position of control element, measured from the left inner edge of the dialog
(in ma units)

 Model.PositionY (long)

 Y-position of control element, measured from top inner edge of the dialog (in
ma units)

To ensure platform independence for the appearance of dialogs, OpenOffice.org uses
the Map AppFont (ma) internal unit to specify the position and size within dialogs. An
ma unit is defined as being one eighth of the average height of a character from the
system font defined in the operating system and one quarter of its width. By using ma
units, OpenOffice.org ensures that a dialog looks the same on different systems
under different system settings.

If you want to change the size or position of control elements for runtime, determine
the total size of the dialog and adjust the values for the control elements to the
corresponding part ratios.

Note – The Map AppFont (ma) replaces the Twips unit to achieve better platform
independence.

Focus and Tabulator Sequence

You can navigate through the control elements in any dialog by pressing the Tab key.
The following properties are available in this context in the control elements model:

 Model.Enabled (Boolean)

 activates the control element

 Model.Tabstop (Boolean)

 allows the control element to be reached through the Tab key

 Model.TabIndex (Long)

 position of control element in the order of activation

Finally, the control element provides a getFocus method that ensures that the
underlying control element receives the focus:

Chapter 11 · Dialogs 227

Focus and Tabulator Sequence

 getFocus

 control element receives the focus (only for dialogs)

Multi-Page Dialogs

A dialog in OpenOffice.org can have more than one tab page. The Step property of a
dialog defines the current tab page of the dialog whereas the Step property for a
control element specifies the tab page where the control element is to be displayed.

The Step-value of 0 is a special case. If you set this value to zero in a dialog, all of
the control elements are visible regardless of their Step value. Similarly, if you set this
value to zero for a control element, the element is displayed on all of the tab pages in
a dialog.

228 OpenOffice.org 3.1 BASIC Guide · April 2009

Multi-Page Dialogs

In the preceding example, you can also assign the Step value of 0 to the dividing line
as well as the Cancel, Prev, Next, and Done buttons to display these elements on all
pages. You can also assign the elements to an individual tab page (for example page
1).

The following program code shows how the Step value in event handlers of the Next
and Prev buttons can be increased or reduced and changes the status of the buttons.

Sub cmdNext_Initiated

Chapter 11 · Dialogs 229

Multi-Page Dialogs

 Dim cmdNext As Object
 Dim cmdPrev As Object

 cmdPrev = Dlg.getControl("cmdPrev")
 cmdNext = Dlg.getControl("cmdNext")
 cmdPrev.Model.Enabled = Not cmdPrev.Model.Enabled
 cmdNext.Model.Enabled = False
 Dlg.Model.Step = Dlg.Model.Step + 1

End Sub

Sub cmdPrev_Initiated

 Dim cmdNext As Object
 Dim cmdPrev As Object

 cmdPrev = Dlg.getControl("cmdPrev")
 cmdNext = Dlg.getControl("cmdNext")
 cmdPrev.Model.Enabled = False
 cmdNext.Model.Enabled = True
 Dlg.Model.Step = Dlg.Model.Step - 1

End Sub

A global Dlg variable that references an open dialog must be included to make this
example possible. The dialog then changes its appearance as follows:

230 OpenOffice.org 3.1 BASIC Guide · April 2009

Multi-Page Dialogs

Events

OpenOffice.org dialogs and forms are based on an event-oriented programming
model where you can assign event handlers to the control elements. An event
handler runs a predefined procedure when a particular action occurs. You can also
edit documents or open databases with event handling as well as access other
control elements.

OpenOffice.org control elements recognize different types of events that can be
triggered in different situations. These event types can be divided into four groups:

 Mouse control: Events that correspond to mouse actions (for example, simple
mouse movements or a click on a particular screen location).

 Keyboard control: Events that are triggered by keyboard strokes.
 Focus modification: Events that OpenOffice.org performs when control elements

are activated or deactivated.
 Control element-specific events: Events that only occur in relation to certain

control elements.

Chapter 11 · Dialogs 231

Multi-Page Dialogs

When you work with events, make sure that you create the associated dialog in the
OpenOffice.org development environment and that it contains the required control
elements or documents (if you apply the events to a form).

The figure above shows the OpenOffice.org Basic development environment with a
dialog window that contains two list boxes. You can move the data from one list to the
other using the buttons between the two list boxes.

If you want to display the layout on screen, then you should create the associated
OpenOffice.org Basic procedures so that they can be called up by the event

232 OpenOffice.org 3.1 BASIC Guide · April 2009

Multi-Page Dialogs

handlers. Even though you can use these procedures in any module, it is best to limit
their use to two modules. To make your code easier to read, you should assign
meaningful names to these procedures. Jumping directly to a general program
procedure from a macro can result in unclear code. Instead, to simplify code
maintenance and troubleshooting, you should create another procedure to serve as
an entry point for event handling - even if it only executes a single call to the target
procedure.

The code in the following example moves an entry from the left to the right list box of
a dialog.

Sub cmdSelect_Initiated

 Dim objList As Object

 lstEntries = Dlg.getControl("lstEntries")
 lstSelection = Dlg.getControl("lstSelection")

 If lstEntries.SelectedItem > 0 Then
 lstSelection.AddItem(lstEntries.SelectedItem, 0)
 lstEntries.removeItems(lstEntries.SelectItemPos, 1)
 Else
 Beep
 End If

End Sub

If this procedure was created in OpenOffice.org Basic, you can assign it to an event
required using the property window of the dialog editor.

Chapter 11 · Dialogs 233

Multi-Page Dialogs

The Assign Action dialog lists all of the available Events. To assign a macro to an
event:

1 Select the event

2 Click Macro...

3 Browse to and select the macro you want to assign

4 Click OK

Parameters

The occurrence of a particular event is not always enough for an appropriate
response. Additional information may be required. For example, to process a mouse
click, you may need the screen position where the mouse button was pressed.

In OpenOffice.org Basic, you can use object parameters to provide more information
about an event to a procedure, for example:

Sub ProcessEvent(Event As Object)

234 OpenOffice.org 3.1 BASIC Guide · April 2009

Parameters

End Sub

The structure and properties of the Event object depend on the type of event that
triggers the procedure call.

Regardless of the type of event, all objects provide access to the relevant control
element and its model. The control element can be reached using Event.Source and
its model using Event.Source.Model.

You can use these properties to trigger an event within an event handler.

Mouse Events

OpenOffice.org Basic recognizes the following mouse events:

 Mouse moved

 user moves mouse

 Mouse moved while key pressed

 user drags mouse while holding down a key

 Mouse button pressed

 user presses a mouse button

 Mouse button released

 user releases a mouse button

 Mouse outside

 user moves mouse outside of the current window

The structure of the associated event objects is defined in the
com.sun.star.awt.MouseEvent structure which provides the following information:

 Buttons (short)

 button pressed (one or more constants in accordance with
com.sun.star.awt.MouseButton)

 X (long)

 X-coordinate of mouse, measured in pixels from the top left corner of the
control element

Chapter 11 · Dialogs 235

Mouse Events

 Y (long)

 Y-coordinate of mouse, measured in pixels from the top left corner of the control
element

 ClickCount (long)

 number of clicks associated with the mouse event (if OpenOffice.org can
respond fast enough, ClickCount is also 1 for a double-click because only an
individual event is initiated)

The constants defined in com.sun.star.awt.MouseButton for the mouse buttons are:

 LEFT

 left mouse button

 RIGHT

 right mouse button

 MIDDLE

 middle mouse button

The following example outputs the mouse position as well as the mouse button that
was pressed:

Sub MouseUp(Event As Object)

 Dim Msg As String

 Msg = "Keys: "
 If Event.Buttons AND com.sun.star.awt.MouseButton.LEFT Then
 Msg = Msg & "LEFT "
 End If

 If Event.Buttons AND com.sun.star.awt.MouseButton.RIGHT Then
 Msg = Msg & "RIGHT "
 End If

 If Event.Buttons AND com.sun.star.awt.MouseButton.MIDDLE Then
 Msg = Msg & "MIDDLE "
 End If

 Msg = Msg & Chr(13) & "Position: "
 Msg = Msg & Event.X & "/" & Event.Y
 MsgBox Msg

End Sub

Note – The VBA Click and Doubleclick events are not available in OpenOffice.org
Basic. Instead use the OpenOffice.org Basic MouseUp event for the click event and
imitate the Doubleclick event by changing the application logic.

236 OpenOffice.org 3.1 BASIC Guide · April 2009

Keyboard Events

Keyboard Events

The following keyboard events are available in OpenOffice.org Basic:

 Key pressed

 user presses a key.

 Key released

 user releases a key

Both events relate to logical key actions and not to physical actions. If the user
presses several keys to output a single character (for example, to add an accent to a
character), then OpenOffice.org Basic only creates one event.

A single key action on a modification key, such as the Shift key or the Alt key does not
create an independent event.

Information about a pressed key is provided by the event object that OpenOffice.org
Basic supplies to the procedure for event handling. It contains the following
properties:

 KeyCode (short)

 code of the pressed key (default values in accordance with
com.sun.star.awt.Key)

 KeyChar (String)

 character that is entered (taking the modification keys into consideration)

The following example uses the KeyCode property to establish if the Enter key, the Tab
key, or one of the other control keys has been pressed. If one of these keys has been
pressed, the name of the key is returned, otherwise the character that was typed is
returned:

Sub KeyPressed(Event As Object)

 Dim Msg As String

 Select Case Event.KeyCode
 Case com.sun.star.awt.Key.RETURN
 Msg = "Return pressed"
 Case com.sun.star.awt.Key.TAB
 Msg = "Tab pressed"
 Case com.sun.star.awt.Key.DELETE
 Msg = "Delete pressed"
 Case com.sun.star.awt.Key.ESCAPE
 Msg = "Escape pressed"
 Case com.sun.star.awt.Key.DOWN
 Msg = "Down pressed"

Chapter 11 · Dialogs 237

Keyboard Events

 Case com.sun.star.awt.Key.UP
 Msg = "Up pressed"
 Case com.sun.star.awt.Key.LEFT
 Msg = "Left pressed"
 Case com.sun.star.awt.Key.RIGHT
 Msg = "Right pressed"
 Case Else
 Msg = "Character " & Event.KeyChar & " entered"
 End Select
 MsgBox Msg

End Sub

Information about other keyboard constants can be found in the API Reference under
the com.sun.star.awt.Key group of constants.

Focus Events

Focus events indicate if a control element receives or loses focus. You can use these
events to, for example, determine if a user has finished processing a control element
so that you can update other elements of a dialog. The following focus events are
available:

 When receiving focus

 element receives focus

 When losing focus

 element loses focus

The Event objects for the focus events are structured as follows:

 FocusFlags (short)

 cause of focus change (default value in accordance with
com.sun.star.awt.FocusChangeReason)

 NextFocus (Object)

 object that receives focus (only for the When losing focus event)

 Temporary (Boolean)

 the focus is temporarily lost

238 OpenOffice.org 3.1 BASIC Guide · April 2009

Control Element-Specific Events

Control Element-Specific Events

In addition to the preceding events, which are supported by all control elements,
there are also some control element-specific events that are only defined for certain
control elements. The most important of these events are:

 When Item Changed

 the value of a control element changes

 Item Status Changed

 the status of a control element changes

 Text modified

 the text of a control element changes

 When initiating

 an action that can be performed when the control element is triggered (for
example, a button is pressed)

When you work with events, note that some events, such as the When initiating
event, can be initiated each time you click the mouse on some control elements (for
example, on radio buttons). No action is performed to check if the status of the
control element has actually changed. To avoid such “blind events”, save the old
control element value in a global variable, and then check to see if the value has
changed when an event is executing.

The When initiating event is also noteworthy for the following reasons:

 This event is initiated by either a key-press or a mouse button. Thus, it provides a
consistent interface for users who navigate by mouse or by keyboard.

 When the Repeat property of a command button is set to True, this event is the
one which is repeatedly sent, as long as the triggering action (key down or mouse-
button down) remains in effect.

The properties for the Item Status Changed event are:

 Selected (long)

 currently selected entry

 Highlighted (long)

 currently highlighted entry

 ItemId (long)

 ID of entry

Chapter 11 · Dialogs 239

Control Element-Specific Events

Dialog Control Elements

OpenOffice.org Basic recognizes a range of control elements which can be divided
into the following groups:

Entry fields Buttons Selection
lists

Other

Text fields
Date fields
Time fields
Numerical fields
Currency fields
Fields adopting
any format

Standard buttons
Checkboxes
Radio Buttons

List boxes
Combo-boxes

Scrollbars (horizontal and
vertical)
Fields of groups
Progress bars
Dividing lines (horizontal
and vertical)
Graphics
File selection fields

Buttons

A button performs an action when you click it.

The simplest scenario is for the button to trigger a When Initiating event when it is
clicked by a user. You can also link another action to the button to close a dialog
using the PushButtonType property. When you click a button that has this property set
to the value of 0, the dialog remains unaffected. If you click a button that has this
property set to the value of 1, the dialog is closed, and the Execute method of the
dialog returns the value 1 (dialog sequence has been ended correctly). If the
PushButtonType has the value of 2, the dialog is closed and the Execute method of
the dialog returns the value 0 (dialog closed). In the Dialog Editor, the property values
are shown symbolically, as Default (0), Okay (1), and Cancel (2).

The following are some of the properties that are available through the button model:

 Model.BackgroundColor (long)

 color of background

 Model.DefaultButton (Boolean)

 The button is used as the default value and responds to the Enter key if it has
no focus

240 OpenOffice.org 3.1 BASIC Guide · April 2009

Buttons

 Model.FontDescriptor (struct)

 structure that specifies the details of the font to be used (in accordance with
com.sun.star.awt.FontDescriptor structure)

 Model.Label (String)

 label that is displayed on the button

 Model.Printable (Boolean)

 the control element can be printed

 Model.TextColor (Long)

 text color of the control element

 Model.HelpText (String)

 help text that is displayed when you move the mouse cursor over the control
element

 Model.HelpURL (String)

 URL of the online help for the corresponding control element

 PushButtonType (short)

 action that is linked to the button (0: no action, 1: OK, 2: Cancel)

Option Buttons

These buttons are generally used in groups and allow you to select from one of
several options. When you select an option, all of the other options in the group are
deactivated. This ensures that at any one time, only one option button is set.

An option button control element provides two properties:

 State (Boolean)

 activates the button

 Label (String)

 label that is displayed on the button

You can also use the following properties from the model of the option buttons:

 Model.FontDescriptor (struct)

 structure with details of the font to be used (in accordance with

Chapter 11 · Dialogs 241

Option Buttons

com.sun.star.awt.FontDescriptor)

 Model.Label (String)

 label that is displayed on the control element

 Model.Printable (Boolean)

 control element can be printed

 Model.State (Short)

 if this property is equal to 1, the option is activated, otherwise it is deactivated

 Model.TextColor (Long)

 text color of control element

 Model.HelpText (String)

 help text that is displayed when the mouse cursor rests over the control
element

 Model.HelpURL (String)

 URL of online help for the corresponding control element

To combine several option buttons in a group, you must position them one after
another in the activation sequence without any gaps (Model.TabIndex property,
described as Order in the dialog editor). If the activation sequence is interrupted by
another control element, then OpenOffice.org automatically starts with a new control
element group that can be activated regardless of the first group of control elements.

Note – Unlike VBA, you cannot insert option buttons in a group of control elements
in OpenOffice.org Basic. The grouping of control elements in OpenOffice.org Basic is
only used to ensure a visual division by drawing a frame around the control elements.

Checkboxes

Checkboxes are used to record a Yes or No value and depending on the mode, they
can adopt two or three states. In addition to the Yes and No states, a check box can
have an in-between state if the corresponding Yes or No status has more than one
meaning or is unclear.

Checkboxes provide the following properties:

242 OpenOffice.org 3.1 BASIC Guide · April 2009

Checkboxes

 State (Short)

 state of the checkbox (0: no, 1: yes, 2: in-between state)

 Label (String)

 label for the control element

 enableTriState (Boolean)

 in addition to the activated and deactivated states, you can also use the in-
between state

The model object of a checkbox provides the following properties:

 Model.FontDescriptor (struct)

 structure with details of the font used (in accordance with
com.sun.star.awt.FontDescriptor structure)

 Model.Label (String)

 label for the control element

 Model.Printable (Boolean)

 the control element can be printed

 Model.State (Short)

 state of the checkbox (0: no, 1: yes, 2: in-between state)

 Model.Tabstop (Boolean)

 the control element can be reached with the Tab key

 Model.TextColor (Long)

 text color of control element

 Model.HelpText (String)

 help text that is displayed when you rest the mouse cursor over the control
element

 Model.HelpURL (String)

 URL of online help for the corresponding control element

Text Fields

Text fields allow users to type numbers and text. The

Chapter 11 · Dialogs 243

Text Fields

com.sun.star.awt.UnoControlEdit service forms the basis for text fields.

A text field can contain one or more lines and can be edited or blocked for user
entries. Text fields can also be used as special currency and numerical fields as well
as screen fields for special tasks. As these control elements are based on the
UnoControlEdit Uno service, their program-controlled handling is similar.

Text fields provide the following properties:

 Text (String)

 current text

 SelectedText (String)

 currently highlighted text

 Selection (Struct)

 read-only highlighting of details (structure in accordance with
com.sun.star.awt.Selection, with the Min and Max properties to specify the start
and end of the current highlighting)

 MaxTextLen (short)

 maximum number of characters that you can type in the field

 Editable (Boolean)

 True activates the option for entering text, False blocks the entry option (the
property cannot be called up directly but only through IsEditable)

 IsEditable (Boolean)

 the content of the control element can be changed, read-only

The following properties are provided through the associated model object:

 Model.Align (short)

 orientation of text (0: left-aligned, 1: centered, 2: right-aligned)

 Model.BackgroundColor (long)

 color of the background of the control element

 Model.Border (short)

 type of border (0: no border, 1: 3D border, 2: simple border)

 Model.EchoChar (String)

 echo character for password fields

244 OpenOffice.org 3.1 BASIC Guide · April 2009

Text Fields

 Model.FontDescriptor (struct)

 structure with details of font used (in accordance with
com.sun.star.awt.FontDescriptor structure)

 Model.HardLineBreaks (Boolean)

 automatic line breaks are permanently inserted in the control element text

 Model.HScroll (Boolean)

 the text has a horizontal scrollbar

 Model.MaxTextLen (Short)

 maximum length of text, where 0 corresponds to no length limit

 Model.MultiLine (Boolean)

 permits entry to spans several lines

 Model.Printable (Boolean)

 the control element can be printed

 Model.ReadOnly (Boolean)

 the content of the control element is read-only

 Model.Tabstop (Boolean)

 the control element can be reached with the Tab key

 Model.Text (String)

 text associate with the control element

 Model.TextColor (Long)

 text color of control element

 Model.VScroll (Boolean)

 the text has a vertical scrollbar

 Model.HelpText (String)

 help text that is displayed when the mouse cursor rests over the control
element

 Model.HelpURL (String)

 URL of online help for the corresponding control element

Chapter 11 · Dialogs 245

List Boxes

List Boxes

List boxes (com.sun.star.awt.UnoControlListBox service) support the following
properties:

 ItemCount (Short)

 number of elements, read-only

 SelectedItem (String)

 text of highlighted entry, read-only

 SelectedItems (Array Of Strings)

 data field with highlighted entries, read-only

 SelectedItemPos (Short)

 number of the entry highlighted at present, read-only

 SelectedItemsPos (Array of Short)

 data field with the number of highlighted entries (for lists which support multiple
selection), read-only

 MultipleMode (Boolean)

 True activates the option for multiple selection of entries, False blocks multiple
selections (the property cannot be called up directly but only through
IsMultipleMode)

 IsMultipleMode (Boolean)

 permits multiple selection within lists, read-only

List boxes provide the following methods:

 addItem (Item, Pos)

 enters the string specified in the Item into the list at the Pos position

 addItems (ItemArray, Pos)

 enters the entries listed in the string's ItemArray data field into the list at the Pos
position

 removeItems (Pos, Count)

 removes Count entries as of the Pos position

 selectItem (Item, SelectMode)

 activates or deactivates highlighting for the element specified in the string Item
depending on the SelectMode Boolean variable

246 OpenOffice.org 3.1 BASIC Guide · April 2009

List Boxes

 makeVisible (Pos)

 scrolls through the list field so that the entry specified with Pos is visible

The model object of the list boxes provides the following properties:

 Model.BackgroundColor (long)

 background color of control element

 Model.Border (short)

 type of border (0: no border, 1: 3D border, 2: simple border)

 Model.FontDescriptor (struct)

 structure with details of font used (in accordance with
com.sun.star.awt.FontDescriptor structure)

 Model.LineCount (Short)

 number of lines in control element

 Model.MultiSelection (Boolean)

 permits multiple selection of entries

 Model.SelectedItems (Array of Strings)

 list of highlighted entries

 Model.StringItemList (Array of Strings)

 list of all entries

 Model.Printable (Boolean)

 the control element can be printed

 Model.ReadOnly (Boolean)

 the content of the control element is read-only

 Model.Tabstop (Boolean)

 the control element can be reached with the Tab key

 Model.TextColor (Long)

 text color of control element

 Model.HelpText (String)

 automatically displayed help text which is displayed if the mouse cursor is
above the control element

 Model.HelpURL (String)

 URL of online help for the corresponding control element

Chapter 11 · Dialogs 247

List Boxes

The VBA option for issuing list entries with a numerical additional value (ItemData)
does not exist in OpenOffice.org Basic. If you want to administer a numerical value
(for example a database ID) in addition to the natural language text, you must create
an auxiliary data field that administers in parallel to the list box.

248 OpenOffice.org 3.1 BASIC Guide · April 2009

12   C H A P T E R 1 2

12 Forms

In many respects, the structure of OpenOffice.org forms corresponds to the dialogs.
There are, however, a few key differences:

 Dialogs appear in the form of one single dialog window, which is displayed over
the document and does not permit any actions other than dialog processing until
the dialog is ended. Forms, on the other hand, are displayed directly in the
document, just like drawing elements.

 A dialog editor is provided for creating dialogs, and this can be found in the
OpenOffice.org Basic development environment. Forms are created using the
Form Controls and the Form Design Toolbar directly within the document.

 Whereas the dialog functions are available in all OpenOffice.org documents, the
full scope of the form functions are only available in text and spreadsheets.

 The control elements of a form can be linked with an external database table. This
function is not available in dialogs.

 The control elements of dialogs and forms differ in several aspects.

Users who want to provide their forms with their own methods for event handling,
should refer to the Dialogs chapter. The mechanisms explained there are identical to
those for forms.

249

http://wiki.services.openoffice.org/w/index.php?oldid=96895
http://wiki.services.openoffice.org/w/index.php?oldid=96895

Forms

Working With Forms

OpenOffice.org forms may contain text fields, list boxes, radio buttons, and a range of
other control elements, which are inserted directly in a text or spreadsheet. The Form
Functions Toolbar is used for editing forms.

A OpenOffice.org form may adopt one of two modes: the draft mode and the display
mode. In draft mode, the position of control elements can be changed and their
properties can be edited using a properties window.

The Form Functions Toolbar is also used to switch between modes.

Determining Object Forms

OpenOffice.org positions the control elements of a form at drawing object level. The
actual object form can be accessed through the Forms list at the drawing level. The
objects are accessed as follows in text documents:

Dim Doc As Object
Dim DrawPage As Object
Dim Form As Object

Doc = StarDesktop.CurrentComponent
DrawPage = Doc.DrawPage
Form = DrawPage.Forms.GetByIndex(0)

The GetByIndex method returns the form with the index number 0.

When working with spreadsheets, an intermediate stage is needed for the Sheets list
because the drawing levels are not located directly in the document but in the
individual sheets:

Dim Doc As Object
Dim Sheet As Object
Dim DrawPage As Object
Dim Form As Object

Doc = StarDesktop.CurrentComponent
Sheet = Doc.Sheets.GetByIndex(0)
DrawPage = Sheet.DrawPage
Form = DrawPage.Forms.GetByIndex(0)

As is already suggested by the GetByIndex method name, a document may contain
several forms. This is useful, for example, if the contents of different databases are
displayed within one document, or if a 1:n database relationship is displayed within a

250 OpenOffice.org 3.1 BASIC Guide · April 2009

Determining Object Forms

form. The option of creating sub-forms is also provided for this purpose.

The Three Aspects of a Control
Element Form

A control element of a form has three aspects:

 The Model of the control element is the key object for the OpenOffice.org Basic-
programmer when working with control element forms.

 The counterpart to this is the View of the control element, which administers the
display information.

 Since control element forms within the documents are administered like a special
drawing element, there is also a Shape object which reflects the drawing
element-specific properties of the control element (in particular its position and
size).

Accessing the Model of Control
Element Forms

The models of the control elements of a form are available through the GetByName
method of the Object form:

Dim Doc As Object
Dim Form As Object
Dim Ctl As Object

Doc = StarDesktop.CurrentComponent
Form = Doc.DrawPage.Forms.GetByIndex(0)
Ctl = Form.getByName("MyListBox")

The example determines the model of the MyListBox control element, which is
located in the first form of the text document currently open.

If you are not sure of the form of a control element, you can use the option for
searching through all forms for the control element required:

Dim Doc As Object
Dim Forms As Object
Dim Form As Object
Dim Ctl As Object
Dim I as Integer

Chapter 12 · Forms 251

Accessing the Model of Control Element Forms

Doc = StarDesktop.CurrentComponent
Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1
 Form = Forms.GetbyIndex(I)
 If Form.HasByName("MyListBox") Then
 Ctl = Form.GetbyName("MyListBox")
 Exit Function
 End If
Next I

The example uses the HasByName method to check all forms of a text document to
determine whether they contain a control element model called MyListBox. If a
corresponding model is found, then a reference to this is saved in the Ctl variable
and the search is terminated.

Accessing the View of Control Element
Forms

To access the view of a control element form, you need the associated model. The
view of the control element can then be determined with the assistance of the model
and using the document controller.

Dim Doc As Object
Dim DocCrl As Object
Dim Forms As Object
Dim Form As Object
Dim Ctl As Object
Dim CtlView As Object
Dim I as Integer

Doc = StarDesktop.CurrentComponent
DocCrl = Doc.getCurrentControler()
Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1
 Form = Forms.GetbyIndex(I)
 If Form.HasByName("MyListBox") Then
 Ctl = Form.GetbyName("MyListBox")
 CtlView = DocCrl.GetControl(Ctl)
 Exit Function
 End If
Next I

The code listed in the example is very similar to the code listed in the previous
example for determining a control element model. It uses not only the Doc document
object but also the DocCrl document controller object which makes reference to the
current document window. With the help of this controller object and the model of the

252 OpenOffice.org 3.1 BASIC Guide · April 2009

Accessing the View of Control Element Forms

control element, it then uses the GetControl method to determine the view (CtlView
variable) of the control element form.

Accessing the Shape Object of Control
Element Forms

The method for accessing the shape objects of a control element also uses the
corresponding drawing level of the document. To determine a special control element,
all drawing elements of the drawing level must be searched through.

Dim Doc As Object
Dim Shape as Object
Dim I as integer

Doc = StarDesktop.CurrentComponent

For i = 0 to Doc.DrawPage.Count - 1
 Shape = Doc.DrawPage(i)
 If HasUnoInterfaces(Shape, "com.sun.star.drawing.XControlShape") Then
 If Shape.Control.Name = "MyListBox" Then
 Exit Function
 End If
 End If
Next

The example checks all drawing elements to determine whether they support the
com.sun.star.drawing.XControlShape interface needed for control element forms. If
this is the case, the Control.Name property then checks whether the name of the
control element is MyListBox. If this is true, the function ends the search.

Determining the Size and Position of Control
Elements

As already mentioned, the size and position of control elements can be determined
using the associated shape object. The control element shape, like all other shape
objects, provides the Size and Position properties for this purpose:

 Size (struct)

 size of control element (com.sun.star.awt.Size data structure)

 Position (struct)

 position of control element (com.sun.star.awt.Point data structure)

Chapter 12 · Forms 253

Accessing the Shape Object of Control Element Forms

The following example shows how the position and size of a control element can be
set using the associated shape object:

Dim Shape As Object

Point.x = 1000
Point.y = 1000
Size.Width = 10000
Size.Height = 10000

Shape.Size = Size
Shape.Position = Point

The shape object of the control element must already be known if the code is to
function. If this is not the case, it must be determined using the preceding code.

Control Element Forms

The control elements available in forms are similar to those of dialogs. The selection
ranges from simple text fields through list and combo boxes to various buttons.

Below, you will find a list of the most important properties for control element forms.
All properties form part of the associated model objects.

In addition to the standard control elements, a table control element is also available
for forms, which enables the complete incorporation of database tables. This is
described in the Database Forms chapter.

Buttons

The model object of a form button provides the following properties:

 BackgroundColor (long)

 background color

 DefaultButton (Boolean)

 the button serves as a default value. In this case, it also responds to the entry
button if it has no focus

 Enabled (Boolean)

 the control element can be activated

254 OpenOffice.org 3.1 BASIC Guide · April 2009

http://wiki.services.openoffice.org/w/index.php?oldid=96903

Buttons

 Tabstop (Boolean)

 the control element can be reached through the tabulator button

 TabIndex (Long)

 position of control element in activation sequence

 FontName (String)

 name of font type

 FontHeight (Single)

 height of character in points (pt)

 Tag (String)

 string containing additional information, which can be saved in the button for
program-controlled access

 TargetURL (String)

 target URL for buttons of the URL type

 TargetFrame (String)

 name of window (or frame) in which TargetURL is to be opened when activating
the button (for buttons of the URL type)

 Label (String)

 button label

 TextColor (Long)

 text color of control element

 HelpText (String)

 automatically displayed help text which is displayed if the mouse cursor is
above the control element

 HelpURL (String)

 URL of online help for the corresponding control element

 ButtonType (Enum)

 action that is linked with the button (default value from
com.sun.star.form.FormButtonType)

Through the ButtonType property, you have the opportunity to define an action that is
automatically performed when the button is pressed. The associated
com.sun.star.form.FormButtonType group of constants provides the following values:

Chapter 12 · Forms 255

Buttons

 PUSH

 standard button

 SUBMIT

 end of form entry (particularly relevant for HTML forms)

 RESET

 resets all values within the form to their original values

 URL

 call of the URL defined in TargetURL (is opened within the window which was
specified through TargetFrame)

The OK and Cancel button types provided in dialogs are not supported in forms.

Option Buttons

The following properties of an option button are available through its model object:

 Enabled (Boolean)

 the control element can be activated

 Tabstop (Boolean)

 the control element can be reached through the tab key

 TabIndex (Long)

 position of control element in the activation sequence

 FontName (String)

 name of font type

 FontHeight (Single)

 height of character in points (pt)

 Tag (String)

 string containing additional information, which can be saved in the button for
program-controlled access

 Label (String)

 inscription of button

256 OpenOffice.org 3.1 BASIC Guide · April 2009

Option Buttons

 Printable (Boolean)

 the control element can be printed

 State (Short)

 if 1, the option is activated, otherwise it is deactivated

 RefValue (String)

 string for saving additional information (for example, for administering data
record IDs)

 TextColor (Long)

 text color of control element

 HelpText (String)

 automatically displayed help text, which is displayed if the mouse cursor is
above the control element

 HelpURL (String)

 URL of online help for the corresponding control element

The mechanism for grouping option buttons distinguishes between the control
elements for dialogs and forms. Whereas control elements appearing one after
another in dialogs are automatically combined to form a group, grouping in forms is
performed on the basis of names. To do this, all option buttons of a group must
contain the same name. OpenOffice.org combines the grouped control elements into
an array so that the individual buttons of a OpenOffice.org Basic program can be
reached in the same way.

The following example shows how the model of a control element group can be
determined.

Dim Doc As Object
Dim Forms As Object
Dim Form As Object
Dim Ctl As Object
Dim I as Integer

Doc = StarDesktop.CurrentComponent
Forms = Doc.Drawpage.Forms

For I = 0 To Forms.Count - 1
 Form = Forms.GetbyIndex(I)
 If Form.HasByName("MyOptions") Then
 Ctl = Form. GetGroupbyName("MyOptions")
 Exit Function
 End If
Next I

The code corresponds to the previous example for determining a simple control

Chapter 12 · Forms 257

Option Buttons

element model. It searches through all forms in the current text document in a loop
and uses the HasByName method to check whether the corresponding form contains
an element with the MyOptions name it is searching for. If this is the case, then the
model array is accessed using the GetGroupByName method (rather than the
GetByName method to determine simple models).

Checkboxes

The model object of a checkbox form provides the following properties:

 Enabled (Boolean)

 the control element can be activated

 Tabstop (Boolean)

 the control element can be reached through the tab key

 TabIndex (Long)

 position of control element in the activation sequence

 FontName (String)

 name of font type

 FontHeight (Single)

 height of character in points (pt)

 Tag (String)

 string containing additional information, which can be saved in the button for
program-controlled access

 Label (String)

 button label

 Printable (Boolean)

 the control element can be printed

 State (Short)

 if 1, the option is activated, otherwise it is deactivated

 RefValue (String)

 string for saving additional information (for example, for administrating data
record IDs)

258 OpenOffice.org 3.1 BASIC Guide · April 2009

Checkboxes

 TextColor (Long)

 text color of control element

 HelpText (String)

 automatically displayed help text, which is displayed if the mouse cursor is
above the control element

 HelpURL (String)

 URL of online help for the corresponding control element

Text Fields

The model objects of text field forms offer the following properties:

 Align (short)

 orientation of text (0: left-aligned, 1: centered, 2: right-aligned)

 BackgroundColor (long)

 background color of control element

 Border (short)

 type of border (0: no border, 1: 3D border, 2: simple border)

 EchoChar (String)

 echo character for password field

 FontName (String)

 name of font type

 FontHeight (Single)

 height of character in points (pt)

 HardLineBreaks (Boolean)

 the automatic line breaks are permanently inserted in the text of the control
element

 HScroll (Boolean)

 the text has a horizontal scrollbar

 MaxTextLen (Short)

 maximum length of text; if 0 is specified, there are no limits

Chapter 12 · Forms 259

Text Fields

 MultiLine (Boolean)

 permits multi-line entries

 Printable (Boolean)

 the control element can be printed

 ReadOnly (Boolean)

 the content of the control element is read-only

 Enabled (Boolean)

 the control element can be activated

 Tabstop (Boolean)

 the control element can be reached through the tab key

 TabIndex (Long)

 position of the control element in the activation sequence

 FontName (String)

 name of font type

 FontHeight (Single)

 height of character in points (pt)

 Text (String)

 text of control element

 TextColor (Long)

 text color of control element

 VScroll (Boolean)

 the text has a vertical scrollbar

 HelpText (String)

 automatically displayed help text, which is displayed if the mouse cursor is
above the control element

 HelpURL (String)

 URL of online help for the corresponding control element

260 OpenOffice.org 3.1 BASIC Guide · April 2009

List Boxes

List Boxes

The model object of the list box forms provides the following properties:

 BackgroundColor (long)

 background color of control element

 Border (short)

 type of border (0: no border, 1: 3D frame, 2: simple frame)

 FontDescriptor (struct)

 structure with details of font to be used (in accordance with
com.sun.star.awt.FontDescriptor structure)

 LineCount (Short)

 number of lines of control element

 MultiSelection (Boolean)

 permits multiple selection of entries

 SelectedItems (Array of Strings)

 list of highlighted entries

 StringItemList (Array of Strings)

 list of all entries

 ValueItemList (Array of Variant)

 list containing additional information for each entry (for example, for
administrating data record IDs)

 Printable (Boolean)

 the control element can be printed

 ReadOnly (Boolean)

 the content of the control element is read-only

 Enabled (Boolean)

 the control element can be activated

 Tabstop (Boolean)

 the control element can be reached through the tab key

 TabIndex (Long)

 position of control element in the activation sequence

Chapter 12 · Forms 261

List Boxes

 FontName (String)

 name of font type

 FontHeight (Single)

 height of character in points (pt)

 Tag (String)

 string containing additional information which can be saved in the button for
program-controlled access

 TextColor (Long)

 text color of control element

 HelpText (String)

 automatically displayed help text, which is displayed if the mouse cursor is
above the control element

 HelpURL (String)

 URL of online help for the corresponding control element

Note – Through their ValueItemList property, list box forms provide a counterpart to
the VBA property, ItemData, through which you can administer additional information
for individual list entries.

Furthermore, the following methods are provided though the view object of the list
box:

 addItem (Item, Pos)

 inserts the string specified in the Item at the Pos position in the list

 addItems (ItemArray, Pos)

 inserts the entries listed in the string's ItemArray data field in the list at the Pos
position

 removeItems (Pos, Count)

 removes Count entries as of the Pos position

 selectItem (Item, SelectMode)

 activates or deactivates the highlighting for the element specified in the string
Item depending on the SelectMode variable

 makeVisible (Pos)

 scrolls through the list field so that the entry specified by Pos is visible

262 OpenOffice.org 3.1 BASIC Guide · April 2009

List Boxes

Database Forms

OpenOffice.org forms can be directly linked to a database. The forms created in this
way provide all the functions of a full database front end without requiring
independent programming work.

You can page through and search in the selected tables and queries, as well as
change data records and insert new data records. OpenOffice.org automatically
ensures that the relevant data is retrieved from the database, and that any changes
made are written back to the database.

A database form corresponds to a standard OpenOffice.org form. In addition to the
standard properties, the following database-specific properties must also be set in the
form:

 DataSourceName (String)

 name of data source (refer to Database Access; the data source must be
globally created in OpenOffice.org)

 Command (String)

 name of table, query, or the SQL select command to which a link is to be made

 CommandType (Const)

 specifies whether the Command is a table, a query or a SQL command (value
from com.sun.star.sdb.CommandType enumeration)

The com.sun.star.sdb.CommandType enumeration covers the following values:

 TABLE

 Table

 QUERY

 Query

 COMMAND

 SQL command

The database fields are assigned to the individual control elements through this
property:

 DataField (String)

 name of linked database field

Chapter 12 · Forms 263

http://wiki.services.openoffice.org/w/index.php?oldid=104513

Tables

Tables

Another control element is provided for work with databases, the table control
element. This represents the content of a complete database table or query. In the
simplest scenario, a table control element is linked to a database using the autopilot
form, which links all columns with the relevant database fields in accordance with the
user specifications.

264 OpenOffice.org 3.1 BASIC Guide · April 2009

	Copyright
	1 OpenOffice.org BASIC Programming Guide
	2 The Language of OpenOffice.org BASIC
	Program Lines
	Comments
	Markers
	Implicit Variable Declaration
	Explicit Variable Declaration
	From a Set of ASCII Characters to Unicode
	String Variables
	Specification of Explicit Strings
	Integer Variables
	Long Integer Variables
	Single Variables
	Double Variables
	Currency Variables
	Floats
	Specification of Explicit Numbers
	Defining Arrays
	Defining values for arrays
	Accessing Arrays
	Array Creation, value assignment and access example
	Local Variables
	Public Domain Variables
	Global Variables
	Private Variables
	Defining Constants
	Scope of Constants
	Predefined Constants
	Mathematical Operators
	Logical Operators
	Comparison Operators
	If...Then...Else
	Select...Case
	For...Next
	For Each
	Do...Loop
	While...Wend
	Programming Example: Sorting With Embedded Loops
	Procedures
	Functions
	Terminating Procedures and Functions Prematurely
	Passing Parameters
	Optional Parameters
	Recursion
	The On Error Instruction
	The Resume Command
	Queries Regarding Error Information
	Tips for Structured Error Handling
	Type...End Type
	With...End With

	3 The Runtime Library of OpenOffice.org Basic
	Implicit and Explicit Type Conversions
	Checking the Content of Variables
	Working with Sets of Characters
	Accessing Parts of a String
	Search and Replace
	Formatting Strings
	Specification of Date and Time Details within the Program Code
	Extracting Date and Time Details
	Retrieving System Date and Time
	Administering Files
	Writing and Reading Text Files
	Displaying Messages
	Input Box For Querying Simple Strings
	Beep
	Shell
	Wait and WaitUntil
	Environ

	4 Introduction to the API
	Properties
	Methods
	The supportsService Method
	Debug Properties
	API Reference
	Creating Context-Dependent Objects
	Named Access to Subordinate Objects
	Index-Based Access to Subordinate Objects
	Iterative Access to Subordinate Objects

	5 Working with OpenOffice.org Documents
	ThisComponent
	Basic Information about Documents in OpenOffice.org
	Creating, Opening and Importing Documents
	Document Objects
	Details about various formatting options

	6 Text Documents
	Paragraphs and Paragraph Portions
	The TextCursor
	Searching for Text Portions
	Replacing Text Portions
	Tables
	Text Frames
	Text Fields
	Bookmarks

	7 Spreadsheet Documents
	Spreadsheets
	Rows and Columns
	Cells and Ranges
	Formatting Spreadsheet Documents
	Cell Ranges
	Searching and Replacing Cell Contents

	8 Drawings and Presentations
	Pages
	Elementary Properties of Drawing Objects
	An Overview of Various Drawing Objects
	Grouping Objects
	Rotating and Shearing Drawing Objects
	Searching and Replacing
	Working With Presentations

	9 Charts (Diagrams)
	Title, Subtitle and Legend
	Background
	Diagram
	Wall and Floor
	Axes
	Properties of Axes
	Grids
	Axes Title
	3D Charts
	Stacked Charts
	Line Charts
	Area Charts
	Bar Charts
	Pie Charts

	10 Databases
	Queries
	Iteration of Tables
	Type-Specific Methods for Retrieving Values
	The ResultSet Variants
	Methods for Navigation in ResultSets
	Modifying Data Records

	11 Dialogs
	Creating Dialogs
	Closing Dialogs
	Access to Individual Control Elements
	Working With the Model of Dialogs and Control Elements
	Name and Title
	Position and Size
	Focus and Tabulator Sequence
	Multi-Page Dialogs
	Parameters
	Mouse Events
	Keyboard Events
	Focus Events
	Control Element-Specific Events
	Buttons
	Option Buttons
	Checkboxes
	Text Fields
	List Boxes

	12 Forms
	Determining Object Forms
	The Three Aspects of a Control Element Form
	Accessing the Model of Control Element Forms
	Accessing the View of Control Element Forms
	Accessing the Shape Object of Control Element Forms
	Buttons
	Option Buttons
	Checkboxes
	Text Fields
	List Boxes
	Tables

