
1

UNO:
Anecdotal Evidence

Stephan Bergmann
Software Engineer
Sun Microsystems, Inc.

1

2

If art is the tip of the iceberg
I'm the part sinking below
―Lou Reed, John Cale, Songs for Drella

2

3

UNO

• An object-oriented framework to bring together:
> different programming languages (C++, Java, Python, ...)
> different environments

– within a process (C++ runtime, JVM, ...)
– across processes (named pipes, sockets)
– across machines (sockets)

• Using bridges among the environments to marshal
method invocations on objects as remote procedure
calls.
> Where the shortcomings of this approach are well

known.

4

Breaking no new ground
―Bongwater

4

5

Minimal Type System

• UNO type system reflects capabilities of target
languages:
> void, boolean, char and string, various integral and

floating point types (minimal?)
> enums (modeled after C)
> structs (records), supporting parametric polymorphism
> interfaces (references to objects, incl. null)
> sequences
> exceptions (somewhat second class)
> any (type + value)

6

No Algebraic Data Types, etc.

• Overall, a rather mediocre type system:
> Encoding sums with products,

 struct Optional<T>{boolean isPresent; T Value;};
instead of
 Optional<T> = NotPresent | Value T

> No parametric polymorphism for interfaces:
 XInterface getElement(); or
 any getElement();

• Then again, how to map the good concepts to the
relevant target languages?

7

Java Binding Oddities

• The base UNO XInterface is mapped to
java.lang.Object. But UNO objects still have to
implement XInterface.
• UNO any is mapped to java.lang.Object, too:

long → java.lang.Integer or
com.sun.star.uno.Any

unsigned long → com.sun.star.uno.Any
XInterface reference → java.lang.Object or

com.sun.star.uno.Any
XFoo reference → com.sun.star.uno.Any

8

Identifiers

• Naively modeled after C.
• Problems with name clashes in language bindings

(keywords, methods named the same as containing
interfaces, etc.).
• Restrictions retrofitted to allow escape mechanisms

in language bindings (goto → method_goto).
• What about languages where case has meaning?

9

Object Life-Cycle

• Implemented with reference counting.
> C++ Reference<T> calls acquire/release.
> Java fnalize calls release across bridge.

• C++ programmers confused when their destructors
are called late (only after JVM garbage collection).
• Cyclic references cause problems, of course.
> XComponent.dispose
> XCloseBroadcaster, XCloseable, and

CloseVetoException

10

URP Oddities

• Compact wire representation.
• Marshalling types:

long: 0x06
com.sun.star.uno.XInterface: 0x16 "com.sun.st..."
sequence<long>: 0x14 "[]long"
 instead of 0x14 0x06

• Negotiating protocol properties during startup:
> If both sides want to set the same properties, both send

the same marshalled blob plus a random number.
Unnecessary life-lock if both sides use identical random
numbers.

11

Asynchronous One-Way Calls

• UNO methods marked as [oneway], implemented
as (semi-)asynchronous URP calls.
> All async calls executed in order.
> All async calls executed before next synchronous call.
> For each UNO thread, there is at most one concurrent

thread executing the async calls.

• Does not really work:

A
B

C

1 async

2

3

A

B

C

1 async, bridge A

2

3 async, bridge B

C++

Java

12

Evolution

• User-defined UNO types want to evolve over time.
• This causes problems in two dimensions:
> Interfaces have both clients and implementations.
> Implementation languages offer limited support.

• UNO only offers mechanisms, no policies.
> Evolve XFoo to XFoo2 to XFoo3.
> Published vs. unpublished types.

13

Everyone wants the honey
but not the sting
―Mark Edwards

13

14

Runtime Type Information

• UNO types described in textual .idl files.
• Translated and combined into binary .rdb files.
• Read at runtime:
> Packing values (type description + void*) in anys.
> Marshalling data across bridges.
> Creating vtables of C++ proxy objects.

• For Java, .class files are used instead.
• So there are two (three, even) descriptions for each

type.

15

.idl Files

• Are C-style preprocessed, complicating things
without need.
> Preprocessor used to handle includes.
> But code makers have to be careful to not generate code

for merely included types.
> Could have used the Java way instead, as (almost) each

type is in its own .idl file, anyway.

16

.rdb Files

• Back when StarOffice still had mail/news
functionality, it used storages to store mails in.
Those often broke and caused data loss.
• A new implementation solved the stability issues.
> (But it is unsound, reducing arbitrary-size string keys to

fixed length hash values.)

• This was re-used for the UNO type database.
> Complex code (no direct access from Java).
> Files are unnecessarily large, due to lots of padding.

17

Active Component Registration

• Each UNO component (collection of UNO service
implementations; shared library or .jar) must be
registered in a services.rdb.
• This is done by calling code in the component.
• OOo extensions are uninstalled as follows:
> Call code in extension to register its services into a

temporary .rdb.
> Iterate entries in temporary .rdb and remove them from

the services.rdb.
> What if extension code no longer loads after an OOo

upgrade?

18

Dynamically Generated Code

• cppumaker only generates headers, no code.
• C++ proxy objects with vtables are generated on the

fly.
• The relevant code is compiler and platform/CPU

dependent.
> Probably the biggest obstacle for porters.
> Subtle bugs, plaguing us for years.

• GCC exception handling needs unique RTTI.
> Implemented via weak symbols, which are expensive at

library load time.

19

Q?

• throw SQLException(...);
 ... UNO bridge in between ...
 catch (SQLException e) ...

kept mysteriously failing under Solaris (catch (...)
worked).

20

Q? Ah!

• throw SQLException(...);
 ... UNO bridge in between ...
 catch (SQLException e) ...

kept mysteriously failing under Solaris (catch (...)
worked).
• In the Solaris C++ ABI, mangled names use the

letter Q as an escape mechanism.
• The Solaris C++ bridge ignored that detail when

generating mangled names for exception handling.

21

Instruction Manual Details

• On Mac OS X PowerPC, is it

 dcbf 0, p or dcbst 0, p
 icbi 0, p sync
 sync icbi 0, p
 isync isync ?!?

22

Instruction Manual Details

• On Mac OS X PowerPC, is it

 dcbf 0, p or dcbst 0, p
 icbi 0, p sync
 sync icbi 0, p
 isync isync ?!?

• The difference is random crashes when the C++
bridge dynamically generates code and does not
correctly synchronize data and instruction memory.

23

Security-Enhanced Linux

• Dynamically generating code under SELinux:
Instead of
 p = mmap(0, n, PROT_READ|PROT_WRITE,
 MAP_PRIVATE|MAP_ANON, -1, 0);
 mprotect(p, n,
 PROT_READ|PROT_WRITE|PROT_EXEC);
one now needs
 fd = mkstemp(name);
 unlink(name);
 ftruncate(fd, n);
 p1 = mmap(0, n, PROT_READ|PROT_WRITE,
 MAP_SHARED, fd, 0);
 p2 = mmap(0, n, PROT_READ|PROT_EXEC,
 MAP_SHARED, fd, 0);

2424

French music sucks
but it is nice
―Sonny Vincent

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

